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Abstract

Historical stock prices are used to predict the direction of future stock prices. The
developed stock price prediction model uses a novel two-layer reasoning approach that
employs domain knowledge from technical analysis in the first layer of reasoning to guide
a second layer of reasoning based on machine learning. The model is supplemented by a
money management strategy that use the historical success of predictions made by the
model to determine the amount of capital to invest on future predictions. Based on a
number of portfolio simulations with trade signals generated by the model, we conclude
that the prediction model successfully outperforms the Oslo Benchmark Index (OSEBX).
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1 Introduction

Forecasting the direction of future stock prices is a widely studied topic in many fields
including trading, finance, statistics and computer science. The motivation for which is
naturally to predict the direction of future prices such that stocks can be bought and sold
at profitable positions. Professional traders typically use fundamental and/or technical
analysis to analyze stocks and make investment decisions. Fundamental analysis is the
traditional approach involving a study of company fundamentals such as revenues and
expenses, market position, annual growth rates, and so on (Murphy, 1999). Technical
analysis, on the other hand, is solely based on the study of historical price fluctuations.
Practitioners of technical analysis study price charts for price patterns and use price
data in different calculations to forecast future price movements (Turner, 2007). The
technical analysis paradigm is thus that there is an inherent correlation between price
and company that can be used to determine when to enter and exit the market .

In finance, statistics and computer science, most traditional models of stock price
prediction use statistical models and/or neural network models derived from price data
(Park and Irwin, 2007). Moreover, the dominant strategy in computer science seems to
be using evolutionary algorithms, neural networks, or a combination of the two (evolving
neural networks). The approach taken in this thesis differ from the traditional approach
in that we use a knowledge-intensive first layer of reasoning based on technical analysis
before applying a second layer of reasoning based on machine learning. The first layer of
reasoning thus performs a coarse-grained analysis of the price data that is subsequently
forwarded to the second layer of reasoning for further analysis. We hypothesis that this
knowledge-intensive coarse-grained analysis will aid the reasoning process in the second
layer as the second layer can then focus on the quintessentially important aspects of the
price data rather than the raw price data itself.

1.1 Purpose

The purpose of the thesis is to create a stock price prediction model for the Oslo Stock
Exchange. The resulting model is intended to be used as a decision support tool or as
an autonomous artificial trader if extended with an interface to the stock exchange. A
high-level system overview of the developed stock price prediction model is presented in
Figure 1.1.

Figure 1.1: The Stock Price Prediction Model
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The developed model employs a two-layer reasoning approach. The first reasoning layer
is a knowledge-intensive Feature Generation module based on domain knowledge from
technical analysis and certain other statistical tools. This is implemented by a set of
artificial agents where each agent employs a specific subset of expertise from technical
analysis. The resulting output is a set of quintessentially important feature-values derived
from the price data (such as price is trending up, a trend reversal is expected to occur, the
stock is trading on high volume, etc.). The generated feature-values are then forwarded
to the second layer of reasoning called the Feature Aggregation module. In the Feature
Aggregation module machine learning is employed to learn a classification model that
aggregate and place the derived feature-values in context of each other. The resulting
output is an investment strategy that can be used to select stocks to trade on the Oslo
Stock Exchange. In the Portfolio and Money Management module the performance of
the investment strategy is evaluated in terms of profitability by simulating portfolio runs
using trade signals generated by the investment strategy. Moreover, the module includes
a money management strategy used to assess the strength (i.e., confidence) of generated
predictions and to determine the amount of capital to invest on a generated trade signal.

1.2 Scope

Our goal with the Feature Generation module is to provide a knowledge-intensive and
computationally efficient coarse-grained analysis of historical prices which can be analyzed
further in a second layer of reasoning. The domain knowledge implemented in the module
is thus limited to methods and techniques in technical analysis. The technical analysis
literature includes a wealth of different stock analysis techniques, some of which involve
complicated and intricate price patterns subjective in both detection and interpretation.
These methods would be both computationally expensive to detect and evaluate, and have
consequently been disregarded. We thus apply Occam’s razor to the choice of methods
in technical analysis, focusing on the most popular indicators that can be efficiently
operationalized and are intuitive in interpretation.

It may seem overly presumptuous to believe that historical price fluctuations alone can
be used to predict the direction of future prices. It may thus seem natural to include
some fundamental analysis knowledge in the feature generation process. However, due to
the inherent limitations in time and the added complexity of including a second analysis
technique, this has not been a priority. We have instead placed focus on creating a model
that can be easily extended with new analysis techniques, not necessarily from technical
analysis, by using two separate reasoning layers and using an agent-oriented approach for
the domain knowledge. The agent-oriented approach is explained in detail in Chapter 3.
Although our goal in this thesis is not to justify, prove or disprove technical analysis, by
focusing strictly on technical indicators we are presented with an opportunity to evaluate
the utility of selected methods in this form of stock analysis.
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Figure 1.2: The Oslo Benchmark Index from 01-01-2005 to 01-04-2010. Notice the sharp
drop from mid-2008 to early 2009 resulting from the financial crisis.

1.3 The Dataset

The dataset available to learn and evaluate the performance of the implemented system
includes daily historical prices available for the stocks currently listed on the Oslo
Benchmark Index (OSEBX). The Oslo Benchmark Index is a weighted index of a
representative selection of the stocks listed on the Oslo Stock Exchange. All stocks listed
on the index are easily transferable which makes our model easier to validate as we
can assume that selected stocks can be bought and sold at any time. The stocks used
are listed in Appendix A along with a Python script that can be used to download the
data from www.netfonds.no. The data used is all data available from 01-01-2005 to
18-05-2010. The data is always separated in a training and test set where the separation
point is configurable and will be noted in the report when needed. Although our focus
in this thesis is on stocks listed on the Oslo Stock Exchange, the developed model can
just as easily be used for any other stock exchange where a sufficient amount of daily
historical prices are available.

1.4 Success Criteria

The purpose of the thesis is to create a stock price prediction model that can be used as a
decision support tool or as an autonomous artificial trader. The central research question
thus becomes, ”can we create a computer system that trades in stocks with performance
comparative to a professional trader”? The primary measure of success will thus be based
on executing portfolio runs that simulate transactions based on some initial investment
capital (e.g., 100 000 NOK) and an investment strategy generated by the model. The
profits generated by portfolio simulations on the model will be evaluated by comparing
it against investing the entire initial investment capital in the Oslo Benchmark Index
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shown in Figure 1.2. If it is more profitable to use the developed stock price prediction
model to select stocks to trade, we consider the model a success.

1.5 Document Structure

The remainder of this thesis document is organized in the following six chapters,

Background and Rationale contains a non-technical overview of trading basics and
traditional stock analysis techniques including the rationale behind technical analy-
sis.

Feature Generation documents different methods in technical analysis and the first
layer of reasoning including the agent population designed to execute the feature
generation process.

Feature Aggregation describes the second layer of reasoning based on machine learn-
ing, evolutionary algorithms and decision tree classification.

Portfolio and Money Management describes the money management strategy and
the portfolio simulation procedure.

Results and Discussion documents the results obtained by testing the developed
model on stocks listed on the Oslo Stock Exchange.

Conclusion contains concluding remarks and points for future work.
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2 Background and Rationale

In this chapter the basics of stock markets, trading, and general price prediction techniques
are introduced. The primary focus will be on the fundamentals that govern stock markets
and the chosen stock analysis technique; technical analysis. Our goal here is not to
go into specific details of methods in technical analysis, but rather give an overview
of the underlying rationale in the field. Methods in technical analysis that have been
implemented in the prediction model will be elaborated in Chapter 3. The chapter is
concluded with an overview of related research on operationalized technical analysis.
Please note that most of the material presented in this chapter was initially researched
and written in a preliminary project (Larsen, 2009), and is presented here in succinct
form for completeness and for readers unfamiliar with the preliminary project.

2.1 Trading Basics

Trading stocks is the process of buying and selling shares of a company on a stock
exchange with the aim of generating profitable returns. The stock exchange operates like
any other economic market; when a buyer wants to buy some quantity of a particular
stock at a certain price, there needs to be a seller willing to sell the stock at the offered
price. Transactions in the stock market are processed by brokers who mediate sales
between buyers and sellers. Brokers typically charge a commission fee for completed
transactions (e.g., a fixed amount for each transaction or a small percentage of the order
total). Naturally, buyers want to minimize the price paid for the stock and sellers want
to maximize the selling price for the stock. The stock market is thus governed by the
same fundamental economic principles as any other economic market, namely supply and
demand.

2.1.1 Supply and Demand

Supply and demand is one of the most fundamental concepts in economic theory and
the backbone of economic and fundamental forecasting (Murphy, 1999). The supply and
demand curve given in Figure 2.1 show the relationship between supply (provided by the
sellers) and demand (provided by the buyers). At price equilibrium (Figure 2.1a), when
the supply curve intersects with the demand curve, the seller and buyer agree on a price
and a transaction can occur. In our case, this would involve a buyer of some quantity of
shares Q∗ of a stock at price P ∗ as provided by some seller.

In Figure 2.1b we see a right shift of the demand curve meaning that, for some reason,
demand has increased. This increase in demand (i.e., there is an increase in the number
of buyers resulting in a situation with more buyers than sellers), creates an increase in
price from p1 to p2 which becomes the new price equilibrium. Traders essentially want
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(a) Price equilibrium at price P ∗

and quantity c.
(b) An increase in demand causes
an increase in price.

(c) An increase in supply causes
a reduction in price.

Figure 2.1: The relationship between supply and demand, figure adapted from www.
wikipedia.com

to recognize this shift in demand before it happens so that the stock can be purchased at
a price close to p1 and sold at a price close to p2, making a profit of p2 − p1. Similarly,
Figure 2.1c shows an increase in supply (i.e., there are more sellers than buyers) that
results in a decrease in price, which we would like to establish early so that we can a) buy
the stock at p2, b) refrain from buying the stock at p1, or c) short sell the stock at p1.

2.1.2 Short Selling

The process of short selling a stock is done to profit from a price decline and involves
selling a stock with the intention of buying it back later at a lower price (Turner, 2007).
Essentially, this involves a broker lending the trader a fixed number of shares of a stock
which are then sold and the profits are credited the trader. Eventually, the trader will
have to cover the position by returning the same number of shares to the broker, profiting
if the stock can be repurchased at a lower price. For example, 100 shares of some stock
are sold short at 5 NOK and the trader is credited with 500 NOK. If the same number
of shares can be repurchased later at 3 NOK, the loan can be returned with a cost of 300
NOK, making a profit of 200 NOK.

2.1.3 Trading Time Frames

Turner (2007) describes four basic trading time frames that are commonly used by traders:

Position trades: stocks may be held from weeks to months.

Swing trades: stocks may be held for two to five days.

Day trades: stocks are bought and sold within the same day.

Momentum trades: stocks are bought and sold within seconds, minutes or hours.

Each time frame has its own risk-reward ratio where shorter time frames are typically
associated with greater risk (Turner, 2007). Due to the computational capacity of a
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computer system we would ideally like to focus on the two shorter time frames, day and
momentum trades (hypothesizing that a computer system would give us an edge over the
other market players as it would have the ability to harvest and analyze information much
quicker than a human trader). However, due to the availability of data sets consisting of
daily stock prices, our primary focus in this thesis will be on swing trades. The techniques
used and the prediction model implemented will be built to be extended with little effort
to support day trading and momentum trades.

2.1.4 Charting Techniques

Figure 2.2: Closing Price Plot

A price chart shows how a stock’s price has evolved over a given period of time, typically
presented as in Figure 2.2 which plots the closing price of the Oslo Benchmark Index
(OSEBX) over the beginning of 2009. Closing price plots provide a good perspective on
the trending direction of the price, but hides some potentially useful information. Within
any time frame, stock prices reach four different levels, namely open, close, high and
low. The opening price is the price at which the stock was traded for at the start of the
period, and similarly the closing price is the price at the end of the period. The high and
low price refers to the highest and lowest price obtained for the stock during the period.
The price levels thus reveal more about how the stock has been traded during the period,
and consequently provides a greater basis for analyzing where the stock will go in the
next period.

Candlestick charts are designed to give the trader a quicker and more complete picture
of price movements in a given time frame. The candlestick entity (named so for its
resemblance to a candle with a wick in both ends), as shown in Figure 2.3, is drawn with
a rectangular ”real body” that represents the range between the opening and closing price,
and lower and upper ”shadows” that represent the lowest and highest price obtained
for the stock in the period. The real body is colored white or green if the closing price
is above the opening price, and black or red if the closing price is below the opening
price. Thus, green candlesticks represent positive price movements and red candlesticks
represent negative price movements. In this way, the candlestick charts provides a more
visual and immediate impression of price movements. Candlestick charts can be used on
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(a) close > open (b) close < open

Figure 2.3: Candlestick entity, figure adapted from Turner (2007)

any time scale, from intraday 15-minute charts to daily or yearly charts. According to
preference and scope of analysis, traders use different time scales when analyzing a stock.
Figure 2.4 shows a daily candlestick chart over the same period as in Figure 2.2.

Figure 2.4: Candlestick Plot

2.2 Technical Analysis

Investors and traders typically employ two classes of tools to decide what stocks to
buy and sell; fundamental and technical analysis, both of which aim at analyzing and
predicting shifts in supply and demand (Turner, 2007). As mentioned earlier, shifts in
supply and demand is the basis of most economic and fundamental forecasting. If there
are more sellers than buyers for a stock (i.e., increased supply), the theory states that
the price should fall, and similarly, if there are more buyers than sellers (i.e., increased
demand) the price should rise. Given the ability to foresee these shifts in supply and
demand thus gives the trader the ability to establish profitable entry and exit positions,
which is the ultimate goal of stock analysis.

While fundamental analysis involves the study of company fundamentals such as revenues
and expenses, market position, annual growth rates, and so on, technical analysis is solely
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concerned with price and volume data, particularly price patterns and volume spikes
(Turner, 2007). Price and volume data is readily available in real time, which makes
technical analysis ideally suited for short-term swing trades. The underlying assumption
in technical analysis is that stock prices evolve with a certain regularity, forming reliable
and predictable price and volume patterns that reveal market psychology which can be
used to determine shifts in supply and demand (Turner, 2007). This assumption might
seem overly presumptuous, and as a result, the next few sections will be devoted to the
premise and psychological rational on which the technical approach to stock analysis is
based.

2.2.1 The Three Premises on which Technical Analysis is Based

Murphy (1999) describes three premises on which technical analysis is based:

1. Market action discounts everything.

2. Prices move in trends.

3. History repeats itself.

Market action discounts everything

Market action is defined by Murphy (1999) as the sources of information available to
the trader (i.e., price and volume data). By assuming that market action discount
everything we are essentially assuming that everything that could influence the price
(that is, fundamentals, politics, psychology, etc.) is integrated and reflected in the price
and volume data. Price thus indirectly provides a perspective of the fundamentals and a
study of price action is therefore all that is required to predict shifts in supply and demand.
For example, if prices are rising, the technician assumes that, for whatever specific reason,
demand must exceed supply and the fundamentals must be positive. Practitioners of
technical analysis thus believe that there is an inherent correlation between market action
and coompany that can be used to forecast the direction of future prices.

Prices move in trends

A price trend is the prevailing direction of a stock’s price over some period of time. The
concept of trend is perhaps the quintessential idea in technical analysis and as we’ll
see in Chapter 3 most technical indicators are designed to identify and follow existing
trends (Turner, 2007). What we are basically looking for when doing technical analysis
is patterns in the price data that signal continuations or reversals in trend. We want to
recognize situations that signal a continuation in trend so that we can ”ride” the trend as
long as possible. We also want to look for situations that signal a reversal in trend so we
can a) sell the stock before the trend turns, or b) buy the stock at the moment it reverses.
For example, if we hold a particular stock in an uptrend, we look for continuations in the
uptrend to confirm our position, and reversals so that we can exit the position before
the stock goes into a downtrend, thereby maximizing potential profits. When analyzing
and picking stocks we thus look for stocks that are trending, try to analyze the strength
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of the trend, and either buy or sell depending on our current position. Thus, for the
methods in technical analysis to have any value, we have to assume that prices does form
in trends.

History repeats itself

When trading with technical analysis we examine stock price data for price patterns that
in some way predict the direction of price in the future. We consequently have to assume
that price patterns form with a certain regularity and that price patterns that have been
successful in the past will be successful in the future. As financial markets are fueled
by human actions and expectations, Murphy (1999) attributes the formation of regular
and predictive price patterns and price calculations to a study in human psychology and
group dynamics which is the basis for behavioral finance.

2.2.2 Behavioral Finance

Early financial theory was predominantly based on the efficient markets hypothesis
(EMH). The efficient markets hypothesis was originally stated in (Fama, 1965) and says
that the price of traded assets (e.g., stocks) are informationally efficient, meaning prices
always fully reflect all known information and instantly change to new information, and
all agents in the market are utility maximizing and have rational expectations. Given this
assumption, any attempt at analyzing past price and trading stocks would be a waste of
time as it would be impossible to consistently outperform the market because all known
information is integrated in the price and all agents value the information equally (Fama,
1965; Shleifer, 2000). The theory was supported by successful theoretical and empirical
work, and was widely considered to be proved. However, from its height of dominance
around the 1970s to the 1990s, it has been challenged by and focus has shifted towards
behavioral finance (Shiller, 2003).

Behavioral finance looks at finance from a broader social science perspective, including
theory from psychology and sociology. Human desires, goals, motivations, errors and
overconfidence are thus included as factors that affect finance (Shefrin, 2002). It follows
hence that investors cannot be viewed as utility maximizing agents with rational expec-
tations. Rather, when two investors are confronted with the same price information,
their reactions will be different, and they will value the information in different ways.
As pointed out by Turner (2007), when a trader buys a stock at a certain price p it is
certainly with expectations that it will rise. In much the same way, the seller at price p is
probably expecting the price to drop. Only one of them can win and make a profit. This
difference in valuation is what drives market changes, trends, and profitable situations.
Turner (2007) thus classifies greed and fear as primary emotions that drive the market.

2.2.3 Greed and Fear

In (Linløkken and Frölich, 2004; Turner, 2007) the motivation for technical analysis is
largely based on human emotions, such as greed and fear, as a primary propellant of
stock prices. Greed and fear are fundamental emotions that motivate nearly all traders.
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For example, Turner (2007) describes the following situation as an example where greed
takes hold of a trader, ”Say you buy a stock at the perfect entry point. Within minutes,
the price rises even higher than you expected. A little voice whispers in your ear, This
baby’s gonna fly. Why don’t you take all the money in your trading account and buy
as many shares as you can? You’ll make a killing!” (Turner, 2007). Fear, on the other
hand, might lead traders to sell shares prematurely. Irrational behavior in the market
thus leads to profitable situations if detected. Price patterns are designed to determine
this irrationality, when greed and fear takes hold of a stock. Turner (2007) explains that
any successful trader need to learn how to control these emotions and rather rely on
detecting when they occur in the market. In our case, a potential artificial trader is
luckily endowed with a sense of bit-calculating rationality, so managing greed and fear
should be a reasonable task.

2.2.4 Critique

Technical analysis is often criticized by academics for its lack of scientific and statistical
validation (Murphy, 1999). In response, technical analysts often argue that technical
analysis is a pragmatic discipline, largely interested in what works rather than existing
theory. The fact remains, though, that a number of methods in technical analysis are
highly subjective in nature, and critics often claim that price patterns and indicators
used by practitioners of technical analysis is more in the mind and eye of the beholder.
Nevertheless, practitioners vividly portray the utility of technical analysis, and its
popularity has grown significantly during the past 10 years. This is most notably seen by
the fact that most major newspapers are now posting stock advice based on technical
analysis, and some brokerage firms (e.g., Christiania Securities in Norway) specialize
in the use of technical analysis. Furthermore, research on the profitability of technical
analysis has increased in volume and statistical significant during the past years. Park
and Irwin (2007) recently did a review of research papers that try to analyze potential
profits generated by technical analysis. They find that modern studies indicate that
technical analysis consistently generate profitable returns in a variety of speculative
markets (e.g., the stock market, foreign exchange market, et cetera).

In our case, technical analysis seems like an ideal approach to automate with a computer
because stock prices are readily available. Furthermore, as many of the indicators in
technical analysis are uncertain and difficult to interpret with purely analytical methods,
it seems like a field ideally suited for artificial intelligence and machine learning. However,
although we will limit our study in this thesis to methods in technical analysis, other
stock analysis techniques will be included as an important point for future work.

2.3 Related Research

In this section several systems and research papers that have investigated the profitability
of computerized technical analysis are presented. Throughout the report we will continue
to investigate the predictability of the techniques discussed. This section thus serves as
an overall, high-level, introduction to this work.
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Brock et al. (1992) describe an approach that employs two technical indicators (one of
which is the moving average crossover rule discussed in detail in Section 3.2) to generate
buy and sell signals. Profits generated by the signals are calculated by simulating
transactions on the Dow Jones Industrial Average over 1897-1986. Their results shows
that the system generate consistent returns. Specifically, investing on the buy signals
produced by the technical indicator generate annual returns of 12%. Another interesting
system is proposed by (Leigh et al., 2002). They propose a system that uses several
techniques in artificial intelligence (e.g., neural networks and genetic algorithms) and
several tools from technical analysis to analyze the stock exchange. They report positive
result and excess returns compared to a simple buy-and-hold strategy.

Investtech1 is a Norwegian company that sell subscriptions to a service that provides
traders with a whole range of technical analysis tools for stocks on the Oslo Stock
Exchange. The technical analysis they provide is primarily generated by automatic
computer tools, although they also provide analyses that are supplemented with an
evaluation from an expert technical analyst. As such, the services provided by Investtech
are quite similar to the system that will be suggested in this report. However, we aim to
take it one step further and allow the artificial trader to issue buy and sell orders on its
own accord.

One of the most successful services provided by Investtech has been today’s case. Each
day, they publish an analysis of a stock that they consider technically positive. The
recommendation includes an analysis by an expert, an automatically generated chart with
technical indicators, an explanation of why the stock is recommended, and conclusively a
buy or sell recommendation in the short and medium long run.

(a) Simulated today’s case portfolio (blue curve)
compared with Benchmark Index from May 2007
to July 2009.

(b) Simulated today’s case portfolio (blue curve)
compared with Benchmark Index from June 2000
to July 2009.

Figure 2.5: Results from simulated portfolio of today’s case recommendations from
Invesstech.

Investtech recently published a report documenting the profits generated by a simulated
portfolio based on the today’s case recommendations2. They show through a simulated
portfolio of at most six stocks derived from recommendations posted as today’s case

1http://www.investtech.com/
2http://www.investtech.no/main/market.php?CountryID=1&p=info&fn=rptCaseStat0908
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that the recommendations yield considerable profits. Different scenarios with different
time frames of investment are simulated. Their results show that the simulated portfolio
rises more when the Oslo Benchmark Index (OSEBX) rises, and falls more when the
benchmark index falls. This is an expected result as trading is generally considered
riskier than placing all investments evenly over the stocks in the exchange. Their report
does not mention how much the simulated portfolio fell compared to the benchmark
index, but as we see from Figure 2.5a their portfolio follows the benchmark quite closely.
In 2009, the simulated portfolio generated profits between 107% and 140% after 0.2%
commission costs. These are considerable numbers considering that the benchmark index
increased by only 32%.

13



14



3 Feature Generation

A good theoretical model of a complex system should be like a good caricature:
it should emphasize those features which are most important and should
downplay the inessential details. Now the only snag with this advice is that
one does not really know which are the inessential details until one has
understood the phenomena under study. (Fisher, 1983)

The Feature Generation module implements the first layer of reasoning in the prediction
model outlined in Section 1.1. The module implements a knowledge-intensive process
that generates a set of discrete feature-values from the price data using domain knowledge
from technical stock analysis. The generated features represent aspects of the data
that are quintessential to stock price prediction. The process is essentially executing a
coarse-grained analysis of the price data, filtering out the seemingly unimportant details
and forwarding the seemingly important details in relation to stock price prediction.

Although the primary purpose of the module is to provide input to the next reasoning
layer, the module may also serve as an independent prediction model. In this way, the
domain knowledge implemented in the module can be tested and evaluated independently
from other parts of the system. Moreover, the module should facilitate easy extension
so that new analysis techniques, not necessarily from technical analysis, can be easily
integrated in the module. As a result, the module was implemented using an agent-
oriented approach where each agent is designed as an independent entity that implements
a subset of knowledge from technical analysis. A conceptual illustration of the agent-
oriented approach is given in Figure 3.1.

The technical analysis field includes a wide range of different methods and techniques.
Some methods in technical analysis are based on intricate and complex price patterns
that would be both computationally expensive to detect and subjective in interpretation.
As we want the Feature Generation process to perform a coarse-grained analysis of the
price data that is subsequently forwarded to a second layer of reasoning we also want
the process to be relatively computationally efficient. We consequently apply Occam’s
razor to the choice of technical indicators, leaving out the intricate price patterns and
focusing on the most popular indicators that can be efficiently operationalized and that
are relatively objective in interpretation.

In order to facilitate easy extension of the agent population we define a formal agent
interface that will be employed by every implemented agent,

Agent(Ps, t)→ {v1, v2, . . .}

where Ps is the price history for some stock s and {v1, v2, . . .} is a set of discrete feature-
values generated by the agent. For any time index t, Agent(Ps, t) generates a feature-value
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v ∈ {v1, v2, . . .} as a prediction for time t+ 1. Thus, each agent in the agent population
represents a feature that generates a fixed set of feature-values. The terms agent and
feature will be used interchangeably in the remainder of the document. In cases where
the domain knowledge implemented by an agent require additional parameters default
values are always given so that the interface corresponds to the one above. An overview
of the generated features is given in Table 3.1.

Some of the agents presented in this chapter was originally implemented during a previous
project (Larsen, 2009). However, the agent population has been expanded and many of
the old agents have been redesigned. A description of the entire agent population will
consequently be included here for completeness.

Feature/Agent Generated Values

Trend Uptrend, Downtrend, Notrend
Moving Average Crossover Buy, Sell, Hold
Candlestick Buy, Sell, Hold
Stochastic Buy, Sell, Hold
Volume Strong-Volume, Weak-Volume
ADX Strong-Trend, Weak-Trend

Table 3.1: Generated Features/Values

3.1 Trend Agent

The concept of price trends is perhaps the quintessential idea in technical analysis and
trading in general (Murphy, 1999; Turner, 2007). The ability to identify price trends is
primarily important for two reasons. For one, traders want to trade with the trend and
”ride” the trend as long as possible (i.e., buying when price trends up and shorting when
price trends down). Secondly, traders want to predict trend reversals (i.e., situations
when the trend turns from uptrend to downtrend, or downtrend to uptrend) in order
to establish good entry and exit positions, in which case being able to establish the
preceding trend is essential.

Formally, a trend in any given time series X = (x1, . . . , xn) is a prolonged period of time
where xi ∈ X rise or fall faster than their historical average (i.e., the prevailing direction
of the data during some interval). A general approach used to identify the trending
direction of a time series X is to first create a smoothed representation, G, that roughly
describes X. Next, the first difference of G is calculated, F(t) = G(t)−G(t− 1), and a
trend is said to be established in intervals where the sign of the first difference is constant.

Figure 3.2 shows a plot of the Oslo Benchmark Index (OSEBX) with manually drawn
trend lines (this plot will serve as a semi-benchmark when evaluating different trend
identifying mechanisms). The plot highlights an important challenge that needs to be
considered when selecting a trend identifying mechanism. Although the price over the
entire interval is, in general, trending up, there are also several short-term downtrends in
the price data. These short-term downtrends are important to detect as we would ideally
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Figure 3.1: The Agent-Oriented Approach to Feature Generation
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Figure 3.2: Oslo Benchmark Index (OSEBX) with manually drawn trend lines.

like to sell before the downtrend occurs and repurchase when the following uptrend starts
to form. However, the trend identifying mechanism should not be overly sensitive to
short-term fluctuations as that would result in falsely reporting a break in trend. Hence,
the trend identifying mechanism should be able to detect several trends in a time series
while not being overly sensitive to short-term fluctuations. In the following sections, three
possible methods for calculating G and identifying trends are discussed and evaluated
according to the above criteria.

3.1.1 Simple Linear Regression

Figure 3.3: Simple Linear Regression

Simple linear regression is a statistical method for approximating a straight line through
a set of n data points (Walpole et al., 2006). One assumes the presence of a straight line
that describes the data, y = α+ βx, where the intercept α and slope β are calculated
using the least squares estimator,
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∑
X

([α̂xi + β̂ − yi]2) xi ∈ X, yi ∈ Y

where α̂ and β̂ are estimators for α and β, respectively. The result is a trend line that
describes the major trend in the data. A statistical hypothesis test can then be executed
to determine if there is a significant linear relationship in the data,

H0 : β = 0
H1 : β 6= 0

Trend =


Uptrend if H0 is rejected and b > 0,
Downtrend if H0 is rejected and b < 0,
Notrend otherwise.

thereby determining if the data is, in fact, trending. A regression line for the Oslo
Benchmark Index (OSEBX) is plotted in Figure 3.3. It is apparent that the regression line
successfully identifies the major trend in the price data. However, given that the regression
line is calculated as a straight line, it is not possible to identify the short-term downtrends
from the regression line. This could be solved by using a higher-degree polynomial for
the regression line. However, curvilinear regression can be computationally expensive to
calculate and research show that curvilinear regression often leads to misleading results
when applied to economic data (Leser, 1961). We thus conclude that we may use simple
linear regression to determine major trends, but we need a different, more robust method,
that will allow us to detect several trends in the price data.

3.1.2 Moving Averages

Moving averages are running averages of a finite size window over a dataset that can be
used as a trend-following device. A Simple Moving Average (SMA) of length n for a data
point xi ∈ X is the unweighted mean of the n past data points,

SMAxi,n = xi + xi−1 + xi−2 + · · ·+ xi−n−1
n

xi ∈ X

When a new observation becomes available, the oldest observation in the window is
dropped and the new observation is added (i.e., the window slides over the new obser-
vation). When calculated over the entire data set X the SMA provides a smoothed
representation of X where the level of smoothing is proportional to n, the length of the
moving average.

A plot of an SMA with n = 50 days is given in Figure 3.4a where changes in the first
difference of the SMA is marked with a ”+” for changes from downtrend to uptrend and
”-” for changes from uptrend to downtrend. The plot shows that the SMA successfully
identifies the trend in intervals where the price moves in an orderly range either up or
down (i.e., no large fluctuations). However, as each data point is equally weighted, single
data points can have a disproportionately large effect on the trendline, causing the first
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(a) n = 50

(b) α = 0.05

Figure 3.4: Plot of the SMA and EMA. Changes in the first difference are denoted with
”+” when the change is positive and ”−” when the change is negative (i.e., changes from
downtrend to uptrend and uptrend to downtrend, respectively).
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difference to fluctuate in intervals where the price is somewhat volatile. Moreover, given
that the SMA is calculated based on the past n data points, it is apparent that the
trendline generated by the SMA is delayed by a factor proportional to n. This constitutes
a problem as changes in trend will only be detected with significant delay. A shorter
moving average would result in a shorter delay, but then at the cost of less smoothing
and more fluctuations in the first difference. Both of these problems can be mitigated,
but not eliminated, by a weighted moving average. The Exponential Moving Average
(EMA) is a weighted moving average where each data point xi is scaled by an exponential
factor α,

EMAxi,n = α× xi−1 + (1− α)× EMAxi−1

where EMAx1 is typically set to x1. Plot 3.4b shows that the EMA provides a smoother
trendline that responds faster to trend shifts than the SMA. However, the trendline
still suffers from some delay and is still fairly sensitive to sudden spikes and short-term
fluctuations in the data. We thus conclude that moving averages can be used to identify
several trends in a dataset, but the trendline generated by moving averages is too sensitive
to short-term fluctuations.

3.1.3 Hodrick-Prescott Filter

The Hodrick-Prescott Filter is a mathematical tool used in macroeconomics to create a
smoothed non-linear representation of a time series that is less sensitive to short-term
fluctuations than long-term fluctuations. The Hodrick-Prescott filter assumes that any
given time series X can be divided into a trend component τt and a cyclical component
ct and expressed by the sum xt = τt + ct (for our purpose ct could perhaps better be
described as a noise component, but we choose to remain consistent with standard
notation). The cyclical component can then be obtained by subtracting τ from x giving
ct = xt − τt. The cyclical component ct and the trend component τt can then be isolated
by solving the following minimization problem,

min
τ

T∑
t=1

(xt − τt)2 + λ
T∑
t=2

[(τt+1 − τt)− (τt − τt−1)]2 xt ∈ X (3.1)

where the first term of the equation is the sum of squared deviation of ct and the second
term is the first difference of the trend component. When solving the minimization
problem the first term penalizes large values of ct (i.e., poor fit) while the second term
penalizes the lack of smoothness in τt. The trade off between the two terms is controlled
by the λ parameter. Consequently, higher values of λ penalizes variations in the first
difference of the trend component causing a smoother trend line that is less sensitive to
short-term fluctuations than long-term fluctuations (it essentially controls the degree
of smoothing over short-term fluctuations). Note that as λ approaches 0 the trend
component approaches the original time series, and as λ approaches infinity τt approaches
a linear trend. The data points in X are typically scaled with the natural logarithm
before calculating τ .
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Danthine and Girardin (1989) show that the solution to the minimization problem
in Equation 3.1 is given by the matrix τ̂ = [I + λK′K]−1x where x = [x1, . . . , xT ]′,
τ = [τ1, . . . , τT ]′, I is a T × T identity matrix, and K = {kij} is a (T − 2) × T matrix
with elements given by

kij =


1 if i = j or i = j + 2,
−2 if i = j + 1,
0 otherwise.

By utilizing the fact that the matrix [I + λK′K]−1x has a pentadiagonal structure
fast numerical software packages can be used to efficiently solve Equation 3.1. This is
important as the filter needs to be re-calculated on every new observation. We have
adapted an algorithm developed by Kurt Annen1 that efficiently calculates the Hodrick-
Prescott Filter. The most apparent drawback of the filter is the problem of choosing an
appropriate value for the the λ parameter. Figure 3.5 shows four plots of the HP filter
with increasing λ values over the closing price of the Oslo Benchmark Index.

It is apparent from Figure 3.5 that the filter works according to its purpose; it is
less sensitive to short-term fluctuations than long-term fluctuations. We also see that
increasing values of the λ parameter causes greater smoothing in the generated trendline.
If we examine the plot with λ = 5000 we find that it perfectly correspond to the manually
drawn trendlines given in 3.2. We thus choose to use the HP Filter with λ = 5000 as the
trend identifying mechanism in the Trend Agent, which is then defined as follows,

Trend-Agentn(Ps, t)→ {Uptrend, Downtrend, Notrend}

The Trend Agent takes as input Ps, the price history for some stock, a trend length size
n, a time index t, and returns the trending direction of the closing prices of Ps in the
interval from Ps(t− n) to Ps(t). This is done by first calculating the Hodrick-Prescott
Filter for Ps(1) to Ps(t). If the sign of the first difference of the trendline generated
by the HP Filter is constant and positive in Ps(t− n) to Ps(t) Uptrend is returned, if
constant and negative Downtrend is returned, or Notrend if it is not constant.

3.2 Moving Average Crossover Agent

The Moving Average Crossover Agent (MAC) is a simple agent that detects crossovers of
two moving averages. Moving average crossovers is a popular technical trading rule used
to detect trend reversals (thereby generating buy and sell signals) (Turner, 2007). Two
simple moving average lines with different lengths, n and m where n < m, are plotted
simultaneously and buy and sell signals are generated at points where the two moving
averages intersect. Buy signals are generated when the shorter moving average (i.e., of
length n) rises above the longer moving average (i.e., of length m), and sell signals are
generated when the shorter moving average falls below the longer moving average.

1http://www.web-reg.de
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(a) λ = 100

(b) λ = 1000

(c) λ = 5000

Figure 3.5: Continued on next page. . .
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(d) λ = 15000

Figure 3.5: Hodrick-Prescott Filter with increasing values for the λ parameter. Changes
in the first difference are denoted by ”+”/”-”.

The general idea is that each moving average measures the trend at different time scales.
Hence, when a shorter moving average rises above a longer moving average, the theory
states that the long-term trend as measured by the long moving average may reverse
to the short-term trend as measured by the short moving average. Consequently, a
buy signal is generated and hold signals are generated until the short moving average
eventually drops below the long moving average. The assumption is that buying pressure
is strong at the crossover point because the average closing price over the past n days
has exceeded the average closing price over the past m days. For example, if n = 20
and m = 50 and the n-line rises above the m-line the average closing price over the past
20 days is now higher than the average closing price over the past 50 days, signifying
that buying pressure has increased and that there may be a trend reversal to the trend
measured by the n-line. If a trend reversal does occur, the m-line will eventually follow
in the direction of the n-line. If the trend subsequently reverses again (after some time),
the n-line will drop below the m-line and a sell signal will be generated.

The Moving Average Crossover Agent (MACA) is initialized with a length for the short
and long moving average, respectively. It then calculates two simple moving averages,
one for each length. Buy and sell signals are then generated by the following rules,

MACn,m(t) =


Buy if SMAn(t− 1) < SMAm(t− 1) and SMAn(t) > SMAm(t),
Sell if SMAn(t− 1) > SMAm(t− 1) and SMAn(t) < SMAm(t),
Hold otherwise.

where n < m. Figure 3.6 shows a plot of the signals generated by two separate instances
of the agent with different moving average length pairs, one short pair (n = 5, m = 20)
and one long pair (n = 20, m = 50). As seen by the plot, the crossovers do generate some
seemingly profitable signals. However, as each signal is delayed, sharp price movements
cause many signals to be generated at less profitable positions. This is immediately
apparent by the sell signal generated in late 2005. Here, the price dropped sharply and a
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sell signal is generated at the end of the downtrend. For the shorter pair instance we see
that the effect is less negative than for the longer pair instance. Moreover, in situations
where the price is moving sideways, whiplashes occur in the moving averages and many
spurious signals are generated. This can be viewed from July, 2006 to January, 2007. This
effect is less dramatic for the longer pair instance than the shorter pair instance. Thus,
there is a trade-off in using a short-pair instance versus a long-pair instance. Shorter
lengths will generate signals with less delay, but more spurious signals will be generated
when the price is moving sideways. Longer lengths will generate signals with more delay,
but less spurious signals are generated when the price is moving sideways. This result is
one of the motivating factors for the Feature Aggregation module presented in Chapter
4. By placing several instances of the Moving Average Crossover Agent in context with
other agents, spurious signals may be mitigated and the benefit of each length pair can
be harvested.

(a) n = 5, m = 20

(b) n = 20, m = 50

Figure 3.6: Signals generated by moving average crossovers. Buy signals are indicated
with a ”+” and sell signals are indicated with a ”−”.

Several studies have been made to assess the predictability of trading strategies that use
moving averages (Brock et al., 1992; Gencay, 1996, 1998; Gencay and Stengos, 1998).
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Brock et al. (1992) use moving average crossovers of several different lengths to produce
buy and sell signals for the Dow Jones Index from 1897 to 1986. Their results provide
strong statistical support in favor of moving average crossovers (Larsen, 2009).

3.3 Candlestick Agent

Figure 3.7: Candlestick

Candlestick pattern analysis is a technique used in tech-
nical analysis to predict short-term trend reversals (Mur-
phy, 1999). Candlestick patterns are formations of typi-
cally one to three candlesticks. Remember from Section
2.1.4 that a candlestick is simply a charting tool that
includes all price information available for a stock in a
given time frame (Figure 3.7). The Candlestick Agent
holds a library of candlestick patterns that, when de-
tected in the price history for some stock, generate buy
and sell signals depending on the detected pattern.

3.3.1 Candlestick Patterns

As mentioned, candlestick patterns are formations of one to several candlesticks that are
designed to predict short-term trend reversals. As such, each candlestick pattern needs
to occur in a discernible trend to be predictive. The Candlestick Agent holds a library of
12 candlestick patterns where 6 of which predict and upcoming uptrend (i.e., they need
to occur in a downtrend) and 6 predict an upcoming downtrend (i.e., they need to occur
in an uptrend). Patterns that predict an uptrend generate buy signals, and patterns that
predict a downtrend generate sell signals. In the following, two patterns contained in the
library of the Candlestick Agent are described.

(a) (b)

Figure 3.8: The Hammer Pattern. Figure 3.8a shows a schematic view of the pattern
while Figure 3.8b shows an actual instance of the pattern in the price history for the
Oslo Benchmark Index (OSEBX).
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Figure 3.8a shows a schematic diagram of the Hammer pattern, a simple candlestick
pattern composed of a single candlestick. The candlestick has a white real body at the
top of the candlestick and the length of the lower shadow is twice the length of the
real body. When the pattern forms in a downtrend the long lower shadow (i.e., the
range between the opening price and lowest price) indicates that the stock experienced
strong selling pressure within the day, pulling the price down and thereby confirming
the downtrend. However, the white real body at the top of the trading range shows
that the stock closed near its high, indicating that the day was concluded with strong
buying pressure. Pressure has thus shifted from sellers to buyers (interpreted as a shift in
supply and demand), indicating that the preceding downtrend may reverse to an uptrend.
The theory states that this shift in control from sellers to buyers that give the pattern
its suggested predictive effect. Figure 3.8b shows an actual occurrence of this pattern
as detected by the Candlestick Agent. In this particular case, the pattern produced a
positive returns investment opportunity.

(a) (b)

Figure 3.9: The Bullish Engulfing Pattern. Figure 3.9a shows a schematic view of the
pattern while Figure 3.9b shows an actual instance of the pattern in the price history for
the Oslo Benchmark Index (OSEBX).

In Figure 3.9 a candlestick pattern named the Bullish Engulfing pattern is given. The
pattern is composed of two candlestick where the latest candlestick engulfs (i.e., covers)
the real body of the previous candlestick. The first black candlestick confirms the current
downtrend, but as the second wide-range white candlestick is formed and covers the first
candlestick, buying pressure has exceeded selling pressure (i.e., the stock opens lower
than the previous day’s close but closes higher than the previous day’s open) and the
current downtrend may reverse to an uptrend. In Figure 3.9b we see the pattern appear
in the price history for OSEBX.

As the discussion above shows, the rationale for candlestick patterns is based on their
interpretation as shifts in buying and selling pressure. Some practitioners view the
candlestick patterns as detectors of market psychology that gauge the mind of the traders
causing the price action (Murphy, 1999). Although practitioners of candlestick analysis
vividly portray their utility (Murphy, 1999; Nison, 1991; Turner, 2007), there seems
to be limited statistical research available on the actual predictability of candlestick
patterns (Park and Irwin, 2007). However, Caginalp and Laurent (1998) did a study on
a selection of 10 different candlestick patterns applied to the S&P stocks (a Benchmark
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Index of 500 large American companies) between 1992 and 1996. Their results indicate
that candlestick pattern can create substantial profits compared to a simple buy-and-
hold strategy (where buy signals are created randomly and stocks are held for a fixed
number of days). Specifically, bullish reversal patterns, like the Hammer and Bullish
Engulfing patterns explained above, produce an average return of 0.9% during a 2-day
holding period for the S&P 500 stocks over 1992-1996. This is a signifcant result as each
investment dollar is committed for an average of only two days, which would result in an
annual return of 309% of the initial investment (Caginalp and Laurent, 1998).

3.3.2 Modeling the Candlestick Patterns

The candlestick library employed by the Candlestick Agent is modeled using a rule-based
approach. Each candlestick pattern is defined by a set of constraints on one or more
candlestick attributes. The candlestick attributes include the open, close, high and low
prices, as well as the following auxiliary attributes used to easy the definition of some
patterns. Each attribute is derived from the price and are given as a percentage of the
price range.

Color =
{

White if Close > Open
Black if Close < Open

Range = High− Low

Body = |Close−Open|
Range

Upper-Shadow =
{

(High− Close)/Range if Color = White
(High−Open)/Range if Color = Black

Lower-Shadow =
{

(Open− Low)/Range if Color = White
(Close− Low)/Range if Color = Black

Furthermore, each candlestick pattern is associated with an attribute that specifies a
previous trend constraint. For example, Hammer pattern is only predictive if it occurs in
a downtrend. When the Candlestick Agent finds an instance of the Hammer pattern it
consequently polls the Trend Agent to determine if the instance occurred in a downtrend.
Instances where the actual trend is inconsistent with the trend constraint are disregarded.

The constraints defining the Hammer pattern is given in Figure 3.10a. Here, Ct refers
to a candlestick at time t, and Ct,a refers to the value of attribute a for candlestick Ct.
In cases where the pattern is composed of several candlesticks, Ct refers to the latest
candlestick in the pattern, and Ct−n refers to the candlestick n time steps prior to Ct.
In accordance with the description of the Hammer pattern, the second rule in Figure
3.10a specifies that the candlestick should be white, the third rule specifies that the lower
shadow should be twice the length of the body, the fourth rule specifies that the upper
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shadow should be short (i.e., less than 5% of the total range), and the last rule specifies
that the candlestick should have some body. In Figure 3.10b, the rules defining the
bullish engulfing pattern are given. Here, rule 4 and 5 specify the engulfing constraint
(i.e., the second body should cover the first body). Each pattern implemented by the
agent is given in Appendix B.

1. Trend = Downtrend
2. Ct,Color = White
3. Ct,Lower-Shadow ≥ 2× Ct,Body
4. Ct,Upper-Shadow ≤ 0.05
5. Ct,Body ≥ 0.10

(a) Hammer Pattern

1. Trend = Downtrend
2. Ct−1,Color = Black
3. Ct,Color = White
4. Ct,Open ≤ Ct−1,Close
5. Ct,Close ≥ Ct−1,Open

(b) Bullish Engulfing Pattern

Figure 3.10: Rule-sets for the Hammer and Bullish Engulfing Pattern

We can then define the Candlestick Agent as follows,

Candlestick-Agent(Ps, t)→ {Buy, Sell, Hold}

The Candlestick-Agent takes the price history Ps for a particular stock, a time index t
and iterates over the rule-sets contained in the candlestick pattern library and returns
Buy, Sell or Hold depending on whether or not it found a rule set that matched at time
t. A Buy signal is generated if the agent detects a pattern that predicts an upcoming
uptrend, and a sell signal if it detects a pattern that predicts an upcoming downtrend.
Hold is returned if none of the rule-sets match.

3.4 Stochastic Agent

The Stochastic Agent generates buy and sell signals by a set of heuristics on values gen-
erated by a momentum indicator called the Stochastic Oscillator. Momentum indicators
are a class of tools that are used measure trend momentum and to detect situations when
a stock is overbought or oversold (Murphy, 1999). An overbought stock is a stock whose
price has increased drastically over a short period of time and is trading at an artificially
high price compared to recent price activity. If a stock is trading at an artificially high
price the theory suggests that the price may reverse, thereby generating a sell signal.
Similarly, an oversold stock is a stock whose price has fallen drastically over a short period
of time, a situation that may indicate that the price will reverse to the upside, thereby
generating a buy signal. When a stock is overbought it is usually a result of unjustifiably
high demand, which means that the stock is probably overvalued and economic theory
tells us that the market will soon adjust and the stock will probably experience a pullback.
An oversold stock, however, usually indicates that the stock is undervalued (fear, or
panic selling typically result in an oversold stock) which may signal a good short-term
investment opportunity (Turner, 2007).
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3.4.1 Stochastic Oscillator

The Stochastic Oscillator is based on the observation that closing prices tend to close to
the upper end of the recent price range in uptrends and to the lower end in downtrends
(Murphy, 1999). It is calculated using two lines, the main %K line and the %D signal
line. The %K line is calculated over some n-length period by the following formula,

%Kn(t) = 100 Ct − Ln
Hn − Ln

where Ct is the latest closing price in the period, Ln is the lowest low in the period, and
Hn is the highest high in the period. The %K line is typically calculated over the past
14 days, but other time frames may also be used. If we examine the above formula we
see that the %K line is basically a percentage measure of where the current closing price
is in relation to the total price range over the past n days. For example, a 14-day %K
value of 20 would indicate that the latest closing price in the price range is 20% above
the lowest low and 80% below the highest high the past 14 days. High values of %K is
typically interpreted as an overbought signal as the closing price is then near the top of
price range. Similarly, low values are intepreted as an oversold signal as the closing price
is near the bottom of the total price range.

The signal line is either a 3-day simple moving average of the %K line called the %Dfast
line, or another 3-day simple moving average of the %Dfast line creating a smoother line
called the %Dslow,

%Dfast = SMA3(%K)
%Dslow = SMA3(%Dfast)

There are several ways of interpreting the values produced by the Stochastic Oscillator.
The approach employed by the Stochastic Agent is adapted from (Murphy, 1999) where
values of %K above 80 are interpreted as the overbought range and values below 20 are
interpreted as the oversold range. A buy signal is then generated if the %K line crosses
above the %Dslow line in the oversold range (that is, the crossover occurs when both
lines are below 20). Similarly, a sell signal is generated if the %K line crosses below the
%Dslow line in the overbought range (that is, the crossover occurs when both lines are
above 80). The Stochastic Agent is thus defined as follows,

Stochastic(Ps, t) =


Buy if %K(t− 1) < %D(t− 1) < 20 and %D(t) < %K(t) < 20,
Sell if %K(t− 1) > %D(t− 1) > 80 and %D(t) > %K(t) > 80,
Hold otherwise.

Figure 3.11 shows a plot of the signals produced by the Stochastic Agent along with a
plot of the signal line and main line. The plot shows that the agent correctly identifies
the stochastic crossovers. Analyzing the utility of the stochastic signals will be done in
Chapter 6.
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Figure 3.11: Signals generated by the Stochastic Agent over a short period of OSEBX.
Buy and sell signals are marked with ’+’/’-’, respectively.

3.5 Volume Agent

Volume refers to the total number of shares traded of a stock in any given time frame,
an important source of information for several reasons. For one, it is the only source
of information that we use which is not a derivative of price, and as such it provides
a ”second opinion” on price movements (Turner, 2007). Secondly, volume information
allows us to measure the strength and value of price movements, an important factor
when analyzing other technical indicators. For example, the oversold and overbought
signals discussed in the previous section are often accompanied and confirmed by high
volume, robust uptrends are typically accompanied by steady volume (indicating that
if volume becomes unstable in an uptrend we might have a trend reversal), candlestick
patterns are typically only predictive if accompanied by high volume, etc. The dataset
available to the Volume Agent includes the total number of shares traded each day for
each stock in the dataset.

Turner (2007) formulates the volume rule that is stated as follows, ”when volume expands,
price expands higher or lower; when volume contracts, price contracts”. In other words,
price often follow volume, and volume often follow the price trend (Linløkken and Frölich,
2004). When this is not the case, volume expands and price does not, it is referred to as
a price-volume divergence, which often signify that volume will expand in upcoming price
movements. When a trend reversal occurs, for example from a downtrend to an uptrend,
volume gives a perspective on the strength of the reversal. If the reversal is accompanied
by high volume (compared to previous volume) the trend reversal is likely to hold and
manifests the new trend. A primary objective thus becomes to measure the level of recent
volume compared to previous volume. That is, how strong is the volume (interest) in
the stock today compared to previous days. A simple method used to measure relative
volume strength is by a volume oscillator (Turner, 2007).

The Volume Agent employs a volume oscillator that use two simple moving averages with
different lengths over the volume data. If volume as measured by the short moving average
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is higher than volume as measured by the long moving average, the short-term volume
trend is higher than the long-term volume trend, and we generate a Strong-Volume signal.
As such, it signals where the short-term current volume is in relation to average volume
in the past. The Volume Agent is thus defined as follows,

Volume-Agentn,m(Vs, t) =
{

Strong-Volume if SMAn(t) > SMAm(t),
Weak-Volume otherwise.

where n < m and Vs is the volume history associated to stock s. For example, if n = 2
and m = 14 days (the default values), a Strong-Volume signal for some day t would
indicate that the volume averaged over the past two days is higher than the volume
averaged over the past 14 days, which is an important signal in combination with other
signals.

3.6 ADX Agent

The ADX Agent implements a measure of trend strength through the use of the Average
Directional Index (ADX). The ADX measure the degree to which the price is trending,
but provides no information on the direction of the trend. It should thus be very useful
in relation to the Trend Agent. The calculations used by the ADX are fairly involved
compared to the other indicators we have discussed so far. The ADX is calculated by
smoothing another indicator, the directional movement index (DX), with an exponential
moving average over some time period n (typically 14 days). The DX is, in turn,
calculated by combining and smoothing two other indicators, the positive and negative
directional indicator (DI+ and DI−), over the same time period. DI+ and DI− are, in
turn, calculated based on a notion of positive and negative directional movement (DM+

and DM−) which is defined as the largest part of the current trading range that is outside
the previous day’s trading range (Wilder, 1978),

DM+
t =

{
max(hight − hight−1, 0) if hight − hight−1 ≥ lowt − lowt−1,
0 otherwise.

DM−t =
{

max(lowt − lowt−1, 0) if hight − hight−1 ≤ lowt − lowt−1,
0 otherwise.

In Wilder (1978) directional movement is defined absolutely as being either up or down, it
cannot be a combination of both. That is, if the largest part of the current trading range
is above the previous day’s trading range, directional movement is positive and DM+

is equal to the current high minus the previous high. If the largest part of the current
trading range is below the previous day’s trading range, directional movement is negative
and DM− is equal to the current low minus the previous low. In other words, DM+

measures the size of any up move for today compared to yesterday and if DM+
t > 0 then

the price has moved up on day t. Similarly, DM− measures the size of any down move
for today compared to yesterday and if DM−t > 0 then the price has moved down on
day t. Directional movement is then defined as a function of range which results in the
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positive and negative directional indicator for a point t which are defined as follows,

DI+
t = DM+

t /TRt

DI−t = DM−t /TRt

where TRt is the true range for day t. The trading range for a single day is typically
defined as hight − lowt. The true range extends this concept to yesterday’s closing price
if it was outside today’s range, TRt = max(hight, closet−1) −min(lowt, closet−1). DI+

t

then essentially defines the percent of the true range that is up for time t (if any) and
DI−t is the percent of the true range that is down for time t (if any). DI+ and DI− are
then calculated and smoothed over the past n days to produce two directional indicator
lines,

DI+
n = EMA(DI+, n)

DI−n = EMA(DI−, n)

When calculated over n = 14 days DI+
14 = 0.36 would indicate that 36% of the true range

for the past 14 days was up. The same holds for down direction with DI−. We can then
calculate the directional movement index (DX) for time t by combining the directional
indicators,

DXt = ((DI+
t −DI−t )/(DI+

t + DI−t ))

which represents the true directional movement. That is, each day with positive directional
movement we are adding to DI+ and subtracting from DI−, resulting in a high value of
DXt. If the price moves in a sideways direction, the difference between DI+ and DI− will
be small which is interpreted as non-directionality.

Figure 3.12: ADX Plot for OSEBX over 2009.

Thus, high values of DX indicate much directional movement while low values of DX
indicate little directional movement. In order to make the DX more reliable it is smoothed
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using an exponential moving (reducing the effect of high price fluctuations) resulting in
the Average Directional Index,

ADXn = 100× EMA(DX, n)

In general, low values (i.e., less than 25) of the ADX are interpreted as the price being
in a weak trend and high values (i.e., above 25) are interpreted as the price being in a
strong trend. The rationale behind this choice is difficult to explained due to the involved
calculations in the ADX, and we rather refer the interested reader to (Wilder, 1978) for
a more in-depth analysis of the directional movement system. Figure 3.12 shows a plot
of the ADX-line over the Oslo Benchmark Index (OSEBX). ADX values below 25 are
marked with a ’-’ to indicate weak trend and ’+’ to indicate strong trend.
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4 Feature Aggregation

The domain knowledge implemented in the feature generation module is not intended to
be used as the sole basis for making investment decisions (Murphy, 1999; Turner, 2007).
Technical traders evaluate different indicators in different situations and different contexts
as each indicator provides a different perspective on the price data. Moreover, technical
traders find that certain indicators provide desired results on only a subset of stocks,
with some indicators generating successful results on one stock but failing on another.
Measures of trend and volume are often viewed as important indicators in context of
other trading rules, and are typically used to confirm or disregard trade signals produced
by other indicators (Linløkken and Frölich, 2004). Technical traders thus have another
form of knowledge that they use to evaluate when and in what circumstances the different
indicators are appropriate. Due to the number of combinations and different contexts
the indicators can be used, formalizing this knowledge is practically impossible, and as
Turner (2007) points out, is a knowledge that can only be acquired through experience.
Hence, there seems to be no sound analytical algorithm that can be used to determine
how to evaluate the different features, thus motivating the idea of a second reasoning
layer.

The Feature Aggregation module employs machine learning to aggregate and place the
generated features in context, creating a unified (and hopefully) profitable investment
strategy. The work presented in this chapter is consequently focused on the imple-
mentation of a learning module that use price data to learn how to utilize the domain
knowledge implemented in the feature generation module. We begin by defining the
learning problem.

4.1 The Learning Problem

When designing a system that is intended to improve its performance through experience,
a typical approach is to begin by formalizing the problem as a well-defined learning
problem. This is done by first identifying the task that the system will execute and learn,
a performance measure that evaluates how well the system performs at the designated
task, and the experience (i.e., training data) that will be used by the system to learn
the task (Mitchell, 1997). In our case, the task involves learning how to best combine
and contextualize the feature-values produced by the agents into a unified investment
strategy. This can be formalized by a target function,

Invest(A(Ps), t)→ {Buy, Sell, Hold} (4.1)

where A is a set of agent instances from the agent population and A(Ps) are the trade
signals generated by the agents in A for price history Ps. Given some time index t,
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the target function should return an investment decision (e.g., buy the stock, sell the
stock or hold the stock). As such, the target function represents the target concept that
the system is intended to learn, an investment strategy for a stock based on the agents
described in the previous chapter. Choosing a representation for the target function
can be a non-trivial task. Possible alternatives include a decision tree, neural network,
rule-engine, etc. It is non-trivial not just because the choice of representation should be
appropriate according to the problem domain and required input and output, but the
choice also dictates the type of learning algorithm employed. The choice of representation
for the target function is discussed further in Section 4.2.

The training data available to learn Invest includes the daily price history for all stocks
currently listed on the Oslo Benchmark Index. The price history includes all daily price
levels (i.e., open, close, high and low) as well as the traded volume each day. In machine
learning, there are two primary types of learning distinguished by the type of feedback
available to the learning system, namely supervised and unsupervised. In the supervised
case, the training data includes the correct output in every training example. That is,
every output produced by the learned function can be instantly evaluated by comparing
it to the correct output given in the training data. This is the traditional approach used
in most industrial applications of machine learning. In the unsupervised case, no specific
output is available in the training data. Training data consisting of daily stock prices is
essentially unsupervised data as there is no information in the data that will allow us
to locally (and instantly) evaluate every output of the learned function. However, we
argue that for our purpose of learning an investment strategy, it is neither beneficial nor
appropriate to locally evaluate every output of Invest.

For example, consider a plot of the price history for Norwegian Air Shuttle (NAS) given
in Figure 4.1a. Here, two potential trade signals have been marked on the plot. Looking
at Figure 4.1a we see that the signals are generated at profitable positions with the buy
signal catching the strong uptrend at the start of the period and the sell signal catching
the downtrend at the end of the period. However, by examining the signals locally at a
closer interval, given in Figure 4.1b and 4.1c, the signals seem less profitable and would
consequently not be credited according to their true utility if evaluated locally. As a
result, it seems more appropriate to view the task of learning Invest as an optimization
problem where the overall performance of the learned function is evaluated in retrospect
rather than instantly for every output.

This complicates both the learning algorithm employed and the performance measure
used. The performance measure will essentially have to use a global evaluation criteria
that evaluates the combined utility of every output of Invest over the entire training data.
Given that the target function is interpreted as an investment strategy and the preceding
discussion, we define the performance measure as the profit-ratio generated by a portfolio
simulation over trade signals generated by Invest for some price history P given an initial
investment capital I. As the performance measure will be used to evaluate other parts of
the system as well, we define it generally for some prediction model M that generates
trade signals {Buy, Sell, Hold} over price history Ps,

Performance(M, I, Ps) = Portfolio-Value1
Portfolio-ValueT

(4.2)
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(a) Price history for NAS (Norwegian Air Shuttle)

(b) Buy Signal Local (c) Sell Signal Local

Figure 4.1: The price history for NAS with a potential buy signal denoted by a ”B” and
sell signal denoted by an ”S”.

where Portfolio-Value1 and Portfolio-ValueT is the total value of the simulated portfolio at
the start and end of the simulation, respectively. The performance measure thus iterates
over t = [1, · · · , T ], retrieves a trade signal from the prediction model by evaluating
M(Ps(t)) for each t and simulate transactions based on the generated trade signal and
associated price history. The output is denoted the profit-ratio of the simulation, i.e.,
the initial investment capital divided by the total value of the portfolio at the end of the
simulation. Our goal with the learning algorithm is then to find a function Invest that
will maximize Performance. The design of the portfolio simulation is discussed in greater
detail in Chapter 5. In the following sections the choice of representation for the target
function and the algorithm implemented to learn the target function will be explained.

4.2 Agent Decision Trees

In order to successfully apply the domain knowledge implemented in the feature generation
module we need to aggregate and place the generated features in context of each other.
That is, we need to create a classification model that classifies different combinations
of the generated features according to the target function given in Equation 4.1. We
consequently need a data structure that aggregates the different features and assigns
classifications to different feature-value combinations. Decision tree classification is a
framework that facilitates the preceding requirements. Decision Tree Learning (DTL) is
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a popular machine learning technique typically used for learning discrete-value target
functions where the problem can be described by a finite set of feature-value pairs. It
has been successfully applied to a whole range of practical problems such as learning to
diagnose medical cases, learning to determine equipment malfunctions and learning to
evaluate the credit risk of loan applicants (Mitchell, 1997).

Figure 4.2: Decision Tree for A1 ⊕A2.

In a decision tree the problem attributes are organized in a tree structure where each
internal node is assigned to an attribute with outgoing arcs corresponding to the possible
values of the attribute. Possible output values for the target function (i.e., classifications)
are added as leafs called classification nodes. Figure 4.2 shows a decision tree that
represents a boolean function with two two boolean attributes A1 and A2. Classification
nodes are marked by a gray box in the example. A classification is reached by traversing
the tree, testing the attribute at each associated node, and following the arc corresponding
to the attribute value. For example, given an instance with A1 = True and A2 = False
the decision tree in Figure 4.2 would give the classification True by following the True
branch at node A1 and the False branch at node A2 (the tree actually represents the
boolean operator A1 ⊕A2). Decision trees are thus evaluated by performing a sequence
of tests on the problem attributes where the order of attributes tested depend on the
tree structure.

In our case, we have a set of discrete feature-value pairs represented by the agents
described in the previous chapter (see Table 3.1 for an overview). Hence, when creating
an Agent Decision Tree each agent instance is added as an internal node in the tree
with outgoing arcs corresponding to the agent’s output values. For example, the node
associated with the Volume Agent has two outgoing arcs labeled Strong-Volume and
Weak-Volume. Our target function has three output values resulting in three classification
types; buy, sell or hold, which are added as leaf nodes in the tree. Figure 4.3 shows an
example agent decision tree with six agent instances. Agent decision trees can be created
with any number of agent instances.

As explained previously, decision trees are evaluated by traversing the tree from root
to classification by testing the feature at each internal node and following the arc
corresponding to the feature value. Similarly, agent decision trees are evaluated by
polling the agent associated with each internal node for its output signal and following
the arc corresponding to the output value. For example, given the example tree in Figure
4.3, if the Trend Agent reports that the stock is in a downtrend we continue by polling
the Volume Agent. Then, if the Volume Agent detects that the stock is trading with
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Figure 4.3: An example agent decision tree. Arc labels are placed over the agent name
and classification nodes are colored red.

relatively low volume and the Stochastic Agent finds that the stock is overbought we end
up with a sell classification. Thus, an agent decision tree represents an an investment
decision reached by performing a sequence of tests on different technical indicators, where
the sequence and type of indicator tested depend on the tree structure. This is the
same approach used by many technical traders, at least according to a selection of the
technical analysis literature (Murphy, 1999; Turner, 2007). Decision trees thus seem
like an appropriate representation for the target function. The algorithm developed for
learning agent decision trees is explained in the following section.

4.3 Evolving Decision Trees

In the general decision tree classification framework, a classification is reached by per-
forming a sequence of tests on the problem attributes. Thus, the output classification
depend on the tree structure and the arrangement of classification nodes. Decision Tree
Learning consequently involves searching for a tree structure that adequately classifies the
training data. Most DTL algorithms stem from the ID3 algorithm and its successor C4.5.
All traditional DTL algorithms are designed for supervised learning and thus require
labeled training data. Traditional DTL algorithms are consequently not applicable in
our case of unsupervised learning. As a result, an Agent Decision Tree Learning (ADTL)
algorithm was created. The algorithm is an evolutionary algorithm that evolves an agent
decision tree for a particular stock through a process of artificial evolution.
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4.3.1 Artificial Evolution

Evolutionary algorithms are a class of optimization and search algorithms that are inspired
by concepts in biological evolution such as inheritance, natural selection, mutation and
mating. The sophisticated, complicated, robust and adaptive features observed in
biological systems serve as a powerful motivator for mimicking these processes in problem-
solving systems. Evolutionary algorithms are often used for problems that are hard to
solve using traditional optimization techniques such as optimizing discontinues functions
and/or functions with many non-linearly related parameters (Floreano and Mattiussi,
2008). They have been applied with successful results to a whole range of practical and
scientific problems, for example, finding novel and patentable analog and electrical circuit
designs (Koza et al., 2003), evolving antenna designs to be used on a NASA aircraft (Lohn
et al., 2005), and more traditional benchmark problems such as the Travelling Salesman
Problem (Floreano and Mattiussi, 2008). Due to elements of randomness and a highly
parallel search, the details of which will be described shortly, evolutionary algorithms
perform a much wider search of the problem space compared to traditional optimization
algorithms. As a result, evolutionary algorithms often find novel solutions that could not
have been obtained using traditional techniques.

Progress in biological evolution require the presence of the following four factors, each of
which are present to some extent in an evolutionary algorithm (Floreano and Mattiussi,
2008).

1. A population of two or more individuals.

2. Diversity in the population (the individuals are not identical).

3. Heredity (individual traits can be transmitted to offspring through reproduction).

4. Selection (only part of the population is allowed to reproduce).

In evolutionary biology the population goes through a cycle of development (i.e., growing
up), natural selection by surviving and being able to reproduce in some environment,
and death. Diversity in the population is maintained as the result of reproduction when
offspring are created as small variations of their parents. Reproduction also results in
heredity as each parent transmits some of their genetic material (i.e., the ”blueprint” of
the organism, such as DNA in biological organisms) to the offspring. The genetic material
of an organism is known as the genotype while its manifestation as an organism is known
as the phenotype. Natural selection then ensures that only the strongest individuals are
able to reproduce by favoring certain individual traits over others (i.e., survival of the
fittest). Thus, inheritance works solely on the genotype, while natural selection works
solely on the phenotype. As this process of recombination, heredity and natural selection
continues over successive generations, the population gradually evolves and adapts to its
environment.

This same process, including concepts of a genotype, phenotype, population, diversity,
heredity and selection is modeled in most applications of evolutionary algorithms. Thus,
individuals in evolutionary algorithms are typically represented by a genotype and a
phenotype that can be derived from the genotype. Following the analogy from biological
evolution, the genotype is often some simple low-level data structure while the phenotype
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Figure 4.4: Binary crossover.

represents a candidate solution that can be executed on the optimization problem.

Different types of evolutionary algorithms are often distinguished by the representation of
the genotype. For example, in genetic algorithms the genotype is represented by a simple
bit string. A development procedure then needs to be specified so that each bit string
can be translated to a candidate solution. For example, a genetic algorithm designed
to solve the Travelling Salesman Problem (TSP) may encode a candidate solution as a
sequence of cities to visit where each city is denoted by an integer. The development
procedure can then be specified as a simple binary to integer conversion. In other cases,
the genetic encoding is more elaborate, such as in Genetic Programming where each
genotype represents a potential computer program.

The genotype representation needs to be designed so that it allows for heredity in
reproduction. Hence, it must be possible to define a process that splits and recombines
different genotypes into new genotypes that can still be translated into valid phenotypes.
In evolutionary algorithms this process is typically implemented by a set of genetic
operators. The genetic operators often include a crossover operator that combine parts
of two parent genotypes to create a new child genotype, and a mutation operator that
creates small variations in a single genotype. The crossover operator is thus primarily
responsible for heredity (although it also introduces some diversity), while the mutation
operator is responsible for diversity. In genetic algorithms the mutation operator is
often defined as a simple bit flip in the genotype bit string. An illustration of crossover
in a bit string genotype is given in Figure 4.4. In some evolutionary algorithms the
reproduction operators are defined directly on the phenotype (if the phenotype can be
logically separated and recombined) and no separate genotype encoding is used.

Natural selection in evolutionary algorithms are modeled by a fitness function and a
selection strategy. The fitness function measures how well the phenotype of an individual
(i.e., candidate solution) solves the given optimization problem. As such, the fitness
function along with the phenotype representation are the aspects of the algorithm that
define the problem to be optimized. For example, a possible fitness function for the TSP
problem could return the length of the tour represented by the input phenotype. Once
the fitness value for each individual has been obtained, natural selection can be executed
by using a selection strategy that performs a weighted stochastic selection process based
on the fitness values. Different selection strategies implemented will be discussed in detail
in Section 4.3.5. The general cycle of an artificial evolutionary cycle is illustrated in
Figure 4.5.
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4.3.2 Evolutionary Cycle

The evolutionary cycle begins in the lower left corner of Figure 4.5. It is initiated with a
population of a fixed number of randomly created genotypes. The population is then
passed to the development phase where each genotype is translated into a phenotype
representing a candidate solution. The population is then sent to the fitness test phase
where the fitness function is executed on every phenotype. The quality of each phenotype
is thus evaluated by executing the phenotype on the given problem, resulting in a fitness
value being associated with each individual. Next, two selection strategies are executed
on the population. First, a number of individuals are chosen to be adults based on
some criteria. The individuals not chosen to be adults are typically removed from the
population (i.e., they die), making room for new offspring. Secondly, the adults compete
among themselves, based on their fitness, to be chosen as parents. Once two parents
have been selected, the reproduction phase is entered where the genetic operators are
executed on the parent genotypes to create new child genotypes. This process of parent
selection and recombination is continued until the population is back to its original
size. The cycle then starts again with the new population, and typically continues for a
number of generations. Once the evolutionary cycle ends (typically after a fixed number
of generations or when the population has reached a predefined fitness threshold), the
fittest individual in the population is chosen as a solution to the target problem.

The rationale behind the process is the same as in evolutionary biology. As the selection
strategies are designed to stochastically choose phenotypes with a bias towards high fitness,
and the recombination operators are designed to maintain some heredity, successively
higher fitness phenotypes are produced. That is, poor fitness phenotypes (poor candidate
solutions) are less likely to be chosen for reproduction and will eventually be removed
from the population (they die) while high fitness phenotypes (good candidate solutions)
are allowed to reproduce and hopefully carry on their good traits to the next generation.
Stochasticity is important in the selection strategies as poor fitness genotypes may hold
good traits that have not been complemented with other traits to show their utility and
high fitness genotypes may represent local optima. We thus want to allow some poor
genotypes to continue to evolve.

In the following sections each element of the evolutionary cycle as implemented in the
Agent Decision Tree Learning (ADTL) algorithm will be explained.

4.3.3 Genotype and Phenotype Representation

As our goal with the ADTL algorithm is to find an agent decision tree that maximizes
potential profits, the phenotypes (i.e., candidate solutions) are decision trees as described
in Section 4.2. The genotype representation is typically implemented as a simple linear
representation of the phenotype that facilitates the reproduction operators (i.e., creating
new genotypes by separating and combining parent genotypes). However, as reproduction
operators are easily specified on tree structures by separating and recombining sub-trees,
the ADTL algorithm employs a direct mapping between genotype and phenotype. That
is, the ADTL algorithm operates directly on a population of decision trees, there is
no conversion from a lower-level genotype. This eliminates the need for an expensive
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Figure 4.5: Basic cycle in artificial evolution.
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development procedure for translating genotypes to phenotypes. This is the same
approach used in genetic programming where each phenotype is an executable computer
program organized in a tree structure where internal nodes are operator functions and
terminal nodes are operands (Lisp is a programming language that can be structured as
a tree).

The classification nodes are added as leafs with a bias to its connected arc. That is, a
buy classification will be added to a buy arc with some probability (say 70%), with sell
and hold being equally probable. For example, when the Candlestick Agent outputs buy
it is more likely to be assigned to a buy classification because the domain knowledge
implemented by the agent suggests that this is a good opportunity to buy. For agents
that do not output buy, sell or hold, we have no prior knowledge of the appropriate
classification so classification nodes are added with no bias.

4.3.4 Fitness Testing

The fitness function should give objective and graded evaluations of the phenotypes.
Graded evaluations are essential as the selection strategies and consequently progress in
the evolutionary cycle will stagnate if the entire population is relatively equal in fitness.
Moreover, the fitness function represents what we want our phenotypes to accomplish
(i.e., the function that we want to maximize). As a result, the fitness function is defined
according to the performance measure described in Section 4.1. That is, the fitness
function performs a portfolio simulation based on the investment strategy represented by
a phenotype (i.e., an agent decision tree) over the training data. In the fitness assessment
stage the fitness function is executed on every phenotype in the population, making it
the most computationally expensive phase of the evolutionary cycle.

The portfolio simulation is initialized with some amount of investment capital and
subsequently evaluates the input decision tree for every day in the training data. Simulated
transactions are then executed based on the classification produced by the decision tree
for each day. As the investment strategy represented by a phenotype is associated to a
single stock, we purchase as many shares as possible using the current available investment
capital on every buy signal and sell all shares currently owned of the stock on every
sell signal. We thus have either all money placed in the stock or no money placed in
the stock. The fitness value returned by the function is the profit-ratio obtained at the
end of the simulation (i.e., the initial investment capital divided by the total value of
the portfolio at the end of the simulation). The actual amount of initial investment
capital is thus irrelevant as we measure the increase or decrease related to this amount.
Extended details on the design and implementation of the portfolio simulation procedure
are described further in Section 5.2.

4.3.5 Selection Strategies

Selection strategies in evolutionary algorithms are essential for the population to evolve.
The purpose of the selection strategies is to introduce some stochasticity into the process
of survival and mating. This is done by performing weighted stochastic selection with a
bias towards high fitness.
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The ADTL algorithm includes two levels of selection, adult selection followed by parent
selection. In adult selection, a number of individuals are selected as candidates for
reproduction. Three different strategies have been implemented for adult selection,

1. Full Generational Replacement

2. Over-Production

3. Generational Mixing

In full generational replacement all adults from the previous generation are removed
on every pass through the evolutionary cycle. All offspring generated by reproduction
thus gain free entrance to the adult pool, resulting in no selection pressure on offspring.
In over-production all adults from the previous generation are similarly removed, but
there is a maximum limit on the number of adults allowed in the population which is
smaller than the number of offspring generated. Thus, the offspring must compete among
themselves for the adult spots using the same mechanism as in parent selection. For
example, given a population of 60 individuals with a fixed adult pool of size 20, the
20 adults will be removed on each generational pass, and the 40 children will compete,
based on their fitness, for the 20 adult spots. Naturally, 40 new offspring will, in this
case, need to be produced on each pass through the cycle. In generational mixing the
entire population compete for a spot in the adult pool. In this case selection pressure on
offspring is very high as they are competing with some of the best individuals that have
evolves so far.

Weighted stochastic selection in evolutionary algorithms is often implemented by roulette
wheel selection. In roulette wheel selection each individual is assigned to a roulette wheel
where the space occupied by each individual is proportional to the individual’s fitness.
Selecting two parents for reproduction is then done by spinning the wheel twice. The
sector space allocated to each individual is determined by normalizing and stacking the
fitness values. For example, given a population of 4 individuals (denoted a,b,c,d) with
the following fitness values, [a:4, b:3: c:2, d:1], the fitness values are first normalized
by dividing by the total sum of fitness, 10, and stacked so that each individual gets
a sub-range in the interval [0, 1). The roulette wheel is thus divided in four sectors
such that a:[0, 0.4), b:[0.4, 0.7), c:[0.7, 0.9), d:[0.9, 1.0). Spinning the roulette wheel
then simply involves generating a random number in the range [0,1) and selecting the
individual that occupies the sector pointed to by the generated number. Figure 4.6
illustrates a roulette wheel with 10 individuals.

In many cases, the individual fitness values are scaled prior to normalization. The
above example with normalized but unscaled fitness values is called fitness proportionate
selection. Scaling fitness values is done to control the selection pressure. For example,
given a population of individuals with one individual significantly dominating in fitness,
the high fitness individual will receive a very large slot on the roulette wheel and
consequently dominate the selection process which may lead the population to prematurely
converge to the high fitness individual, an example of which can be view in Figure 4.7a.
One scaling approach implemented in ADTL called sigma scaling uses the population’s
fitness variance as a scaling factor,
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(a) Roulette wheel with normalized but unscaled
fitness values.

(b) Roulette wheel with sigma scaled and normal-
ized fitness values.

Figure 4.6: The original fitness values are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Figure adapted from
(Downing, 2009).

Scale(i, g) = 1 + f(i)− ¯f(g)
2σ(g) (4.3)

where g is the generation number, f(i) is the fitness of individual i, ¯f(g) is the population’s
fitness average in generation g, and σ(g) is the standard deviation of population fitness.
Sigma scaling effectively alters the selection pressure in cases when a few individuals are
much better than the rest of the population (as the standard deviation of population
fitness, σ(g), would then be high). It also helps to increase selection pressure in cases
where the population has very similar fitness (i.e., low σ(g)). Figure 4.6 and 4.7 show
two examples of sigma scaling compared to fitness proportionate scaling.

(a) Roulette wheel with normalized but unscaled
fitness values. The high fitness individual is al-
loted a large sector on the roulette wheel.

(b) Roulette wheel with sigma scaled fitness values.
Notice the more even distribution.

Figure 4.7: The original fitness values are 1, 1, 1, 1, 1, 1, 1, 1, 3, 6. Figure adapted from
(Downing, 2009).
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4.3.6 Reproduction

The purpose of the reproduction operators is to provide variation in the population so
that progress in the evolution does not stagnate and to allow the favorable traits of one
generation to be passed on to the next. The ADTL algorithm includes two reproduction
operators, crossover and mutation.

The mutation operator does a simple random operation to re-structure a candidate tree.
When applied to a tree the operator re-builds the tree by selecting nodes at random
from the original tree, creating a new tree likely very different from the original tree.
As such, the mutation operator serves the purpose of diversifying the population. In
this way, the algorithm always has some chance to escape from potential local optima.
The operator is associated with a mutation rate that dictates how often an individual
will be chosen for mutation (e.g., there is a 5% probability that any given phenotype is
chosen for mutation). Like the other parameters associated with ADTL, the mutation
rate needs to be manually tuned. If set too aggressive, the algorithm will loose direction
and progress in the search, resulting in a population of random individuals. If set too
low, the algorithm might converge to a local optima early in the run, also resulting in a
lack of progress.

The crossover operator executes a random subtree swapping between two candidate trees.
It takes two parent trees, t1 and t2, and returns two new child trees, c1 and c2. The
crossover is performed by first selecting a random split node in each tree, s1 and s2. Each
split node then defines a subtree in their respective parent. The subtrees, as defined
by s1 and s2, are then swapped such that the parent of s1 becomes the new parent of
s2, and vice versa. If s1 and s2 are selected such that they are both the root in their
respective trees (s1 is the root in t1 and s2 is the root in t2), no crossover is performed
and c1 and c2 are returned as identical copies of their parents. The crossover operator is
illustrated in Figure 4.8. Here the Candlestick Agent was chosen as s1 in the first parent
tree and the ADX Agent was chosen as s2 in the second parent tree. The result of the
swap, shown in the bottom half of the figure, are two agent decision trees fairly different
from their parents.

Once the crossover has been performed, the new child trees are pruned to ensure that no
agent is used more than once along each branch. The pruning mechanism operates by
traversing each branch and keeping a record of the agents evaluated along each path down
the tree. If an agent is encountered twice along the same path, the latter agent is replaced
by the sub-tree connected to the arc associated with the latter agent output. The purpose
of the pruning mechanism is to decrease memory usage and increase computational
efficiency, it has no effect on the classifications generated by a candidate tree.

Depending on the random choice of the split node, the offspring created by the crossover
operator might be very diverse or very similar to their parents. As mentioned above, if
the root node is chosen to split in both parent trees, the children returned are identical
copies of their parents. If, however, an internal node is chosen in both trees, two very
diverse children might be created. Moreover, if two leaf nodes are chosen to split in both
trees, the children will be very similar, but not identical to their parents. s1 and s2 can
also be chosen as to be classification nodes, making a simple swap of classification. This
was essentially a design goal when creating the crossover operator as a good balance
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Figure 4.8: Agent Decision Tree Crossover
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between heredity and randomness improves the direction and progress of the search while
simultaneously protecting against getting stuck in local optima (balance exploitation
with exploration).

4.3.7 ADTL Parameters

As noted in (Floreano and Mattiussi, 2008), one major drawback with evolutionary
algorithms is the number of parameters that have to manually tuned for each application.
The parameters associated to the ADTL algorithm are given in the left column of Table
4.1. Through extensive empirical tests during development we have found that the values
given below allow us to evolve sufficiently high fitness phenotypes within reasonable
time. On the development laptop (a Dell XPS M1330 with a Intel Core2 Duo 2.1GHZ
CPU and 2GB RAM running on Windows 7) evolving a decision tree for a single stock
over 200 generations with a population size of 100 decision trees takes approximately
15 to 20 seconds. Evolving a tree for every stock in the dataset (53 in total) then takes
approximately 15 minutes.

Parameter Value

Population Size 100
Adult Pool Size 50
Generations 200
Elitism Rate 1
Mutation Rate 0.15
Adult Selection Generational Mixing
Parent Selection Roulette-Wheel with Sigma-scaling

Table 4.1: ADTL Parameters
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5 Portfolio and Money Management

The Portfolio and Money Management module is responsible for two tasks; running
portfolio simulations and deciding how much money to invest on a given trade signal.
Portfolio simulations are used as the fitness function in the ADTL algorithm and to
evaluate the performance of the entire system.

5.1 Money Management

The money management strategy is responsible for determining the amount of money to
invest on a given trade signal. A simple approach to this problem would be to always
invest a fixed fraction of available investment capital, a fixed sum, or a fixed number of
shares on every trade signal. However, as all trade signals are generated by evaluating
price data, we want to utilize the price data to calculate a confidence measure associated
to each trade signal (e.g., we are 60% confident that a buy signal generated for Norwegian
Air Shuttle (NAS) will result in positive returns). Essentially, more money should be
invested on trade signals that have been profitable in the past, according to some criteria.
Trade signals that are, historically, less profitable should be awarded less money so
that more money is available for historically profitable signals. Moreover, trade signals
with a history of negative returns may be disregarded. Naturally, there is no guarantee
that historical success can be extended to the future, but we assume that some money
management strategy based on a measure of historical success is better than the naive
approach of always investing a fixed quantity. This assumption will be evaluated and
discussed in Chapter 6.

The strategy used by the money management module is based on the Kelly Criterion
(Kelly, 1956), an optimal betting strategy for favorable gambling games. Although its
application was originally described for gambling games, it has also been applied to the
stock market and portfolio management with positive results (Browne and Whitt, 1996;
Rotando and Thorp, 1992). The Kelly Criterion is based on maximizing a quantity G
defined as the exponential growth rate of a gambler’s capital,

G = lim
N→∞

1
N

log VN
V0

where V0 is the gambler’s initial capital and VN is the capital after N bets. Consider
a bet that we know we can win with a probability p > 0.5 with b-to-1 odds. We have
100 NOK to wager and we are given even money odds (i.e., b = 1, we double up or
loose the entire bet). If we decide to bet a fraction f = 0.2 of current money we get
V1 = (1 + bf)V0 = (1 + 0.2)100 = 120 if we win or V1 = (1− f)V0 = (1− 0.2)100 = 80
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if we loose. In general, given that V0 is the initial capital and VN is the capital after
N bets, we have VN = (1 + bf)W (1 − f)LV0 where W and L are the number of wins
and losses in the N bets. The Kelly Criterion then identifies a fraction f of the current
bankroll to bet that will maximize the exponential growth rate of VN ,

G(f) = lim
N→∞

W

N
log(1 + bf) + L

N
log(1− f)

= p log(1 + bf) + q log(1− f)

where limN→∞
W
N = p is the probability of winning and limN→∞

L
N = 1− p = q is the

probability of loosing. If we derive G(f) and solve for f we find the Kelly Criterion,

f∗ = bp− q
b

where f∗ is the fraction of current capital to wager on each bet in order to maximize G
in the long run. For example, given a 1-to-1 bet with a 60% probability of winning the
Kelly Criterion says that the gambler should bet a fraction (1×0.6)−0.4

1 = 0.2 of current
money in order to maximize the exponential growth rate of the gambler’s capital. If
b < q/p the Kelly value will be negative, thus indicating that the gambler should take
the opposite side of the bet (if possible).

When applied to investing we need to calculate estimates for the odds b and probability of
winning p. One approach considered is to interpret the b parameter as the possible gain
received by investing in the stock. For example, if we purchase some stock and believe
that its price will increase by 5% the gain is g = 1.05. If we keep g fixed, calculating the
probability of ”winning” the investment would simply involve counting the number of
buy signals that reached the target gain within some maximum allowable time period
(e.g., 10 days). For sell signals we interpret the g parameter as the potential gain received
by not owning the stock. f∗ is then interpreted as the fraction of the current volume of
stock (if any) that should be sold. For example, lets say we have 10 buy signals generated
over the training data for NAS (Norwegian Air Shuttle). If the price of NAS increased
by the target gain (say 5%) within 10 days in 7 out of the 10 signals we get p = 0.7 for
the buy signals generated over NAS. For sell signals we use a target decrease of the same
magnitude to calculate p (i.e., we have essentially gained g by selling the stock). That is,
if we have 10 sell signals where the price in 6 out of the 10 signals dropped by 5% within
10 days we get p = 0.6 for the sell signals generated over NAS.

For the agent decision trees described in Section 4.2 the probability p using the inter-
pretation of the odds as a target increase/decrease may be calculated for every buy/sell
classification, respectively. Thus, each classification reached by an agent decision tree is
associated with a success rate that can be used in the Kelly formula to determine the
number of shares to buy or sell given the classification. Figure 5.1 shows a randomly
created decision tree for the Oslo Benchmark Index with success rates associated to each
classification node calculated over the training data.
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Figure 5.1: Agent Decision Tree with success rates calculated for each classification node.

As b needs to be stated in b-to-1 odds, we need to use b = g − 1 in the Kelly formula. If
we use b = g − 1 in the formula and assume that g remain fixed we find that p > 1

g to
obtain f∗ > 0. Thus, if we use a target increase of 5% we get p > 1

1.05 = 0.95 or with
a target increase of 10% we get p > 0.91. It may seem implausible that over 95% of
the classifications will reach the target gain of 5%. We consequently also implement an
alternative interpretation for the b-parameter.

Traders often interpret the odds b as the win/loss ratio associated to historical trades 1.
The win/loss ratio is defined as the average gain of positive trades divided by the average
loss of negative trades. A positive trade is defined as a trade that generated positive
returns while a negative trade is a trade that generated negative returns. In our case, a
buy trade is defined as one or more buy signals followed by a sell signal. A sell trade
is defined by one or more sell signals followed by a buy signal (i.e., a short trade). For
example, lets say we have 3 buy trades, with two trades generating positive returns. For
the two positive trades the stock price increased by 3 NOK and 5 NOK, respectively. For
the negative trade, the stock price decreased by 4 NOK. We thus get an average gain
for the positive trades of (3 + 5)/2 = 4 and an average loss for the negative trades of 4,
giving b = 4/4 = 1. We then define the probability of winning a trade p as the number
of winning trades divided by the total number of trades. Thus, we get p = 2/3, and for
future buy trades we get a Kelly value of (1×(2/3))−(1/3)

1 = 0.33. We should thus invest
33% of current capital on future buy signals.

1http://www.investopedia.com/articles/trading/04/091504.asp
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5.2 Portfolio Simulations

Portfolio simulations are executed by simulating buy and sell transactions based trade
signals generated by some prediction model and an amount of initial investment capital
(the default is 100 000 NOK),

Portfolio-Simulation(M, I, Ps) = Portfolio-Value1
Portfolio-ValueT

where M(Ps, t) → {Buy, Sell, Hold} is a prediction model for Ps(t), I is the initial
investment capital, Portfolio-Value1 and Portfolio-ValueT is the total value of the simu-
lated portfolio at the start and end of the simulation, respectively. When initiated the
simulation iterates over t = [1, · · · , T − 1] (i.e., each day in the training or test data) and
execute M(Ps, t) to generate a trade signal. A transaction corresponding to the trade
signal is then executed on day t+ 1. As we use daily price data, trade signals will only
be generated at the end of each business day so the transaction has to be executed on
the following day. If a buy signal is generated, we assume that we are able to buy the
stock at the opening price on the following day, Ps(t+ 1). The same holds for sell signals,
we assume that the stock can be sold at the opening price the following day. In reality,
these assumptions may not necessarily hold as we may not be able to find a buyer/seller
willing to fill our order at the opening price.

The amount of stock to buy or sell is either defined by a fixed order total or determined
by the money management strategy. For example, if the simulation is executed with a
fixed order total of 1000 NOK we purchase shares for 1000 NOK on every buy signal (i.e.,
the number of shares to buy is b1000/Ps(t+ 1)c), and sell all shares (if any) on every sell
signal. In some portfolio simulations we use an order total equal to the current available
investment capital. That is, we either have all money invested in a single stock or all
money as free capital. In this case, consecutive buy signal will be disregarded as there
is no money to invest after the first buy signal. When using the money management
strategy, the strategy calculates a fraction f∗ of current available capital and the number
of shares to buy is given by b(capitalt × f∗)/Ps(t+ 1)c.

For example, given a buy signal for Norwegian Air Shuttle (NAS) on 10-05-2010, we
assume that the stock can be bought at the opening price on 11-05-2010, the number
of shares to purchase is calculated by the money management module or a fixed order
total is used, and given that there is sufficient capital to buy, the stock is added to the
portfolio and the free investment capital is reduced according to the cost of purchasing
the shares. If there is no available capital to purchase the shares the trade signal is simply
ignored. When sell signals are processed the number of shares sold is subtracted from
the current portfolio and the profits are credited to the free investment capital. If a sell
signal is generated for a stock that we do not currently own the signal is simply ignored
(i.e., we do not handle short selling).

Portfolio simulations can also be executed for a set of stocks (rather than a single stock
as described above), which is more realistic compared to real trading. In that case, the
portfolio simulation takes a set of stocks S = [s1, · · · , sn] and for each s executes M(Ps, t)
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to generate a trade signal for stock s at time t. The result is a set of trade signals
generated for different stocks each day. If the money management strategy is used the
values generated by the strategy are employed to prioritize the trade signals. We thus
interpret the money management value as a measure of signal strength and prioritize
signals with a high money management value. If we want to invest more money in the
stock, we should be more confident in the signal, thus we choose the signal with the
strongest investment value. Transactions are then processed according to the trade signals
until a maximum transaction limit is met. The transaction limit is important as we
potentially have a buy or sell signal for every stock in the dataset. The transaction limit
is typically set to one buy and one sell transaction each day. If the money management
strategy is not used we execute every generated trade signal (given that there is enough
free investment capital).

For example, using the money management strategy and a transaction limit as defined
above; given three signals on 10-05-2010, including two buy signals; one for Norwegian
Air Shuttle (NAS) and one for Seadrill (SDRL), and a sell signal for Blom (BLO), the
signals are first sorted according to their money management value. If buy signals for
NAS have been more successful in the past than buy signals for SDRL, a buy transaction
for NAS is executed and the trade signal for SDRL is ignored. The sell signal for BLO
will be executed regardless as there was no competing sell signals.

In addition to calculating the profit-ratio at the end of a simulation, portfolio simulations
also generate plots of the portfolio value history, portfolio value distribution, free invest-
ment capital history and transaction history (using a Java library called JFreeChart1).
The portfolio value history is the total value of the simulated portfolio at any point in
time. That is, for any point in time the portfolio value is calculated as the accumulated
value of the number of shares owned in each stock multiplied by its closing price, plus any
free investment capital. For example, on 10-05-2010 a simulated portfolio may contain
100 shares of NAS, SDRL and BLOM. If we assume that the closing price for each stock
on 10-05-2010 is 10 NOK and we have 1000 NOK in free investment capital, we get a
portfolio value of 10× 100 + 10× 100 + 10× 100 + 1000 = 4000. Portfolio value history
plots can also be generated for a single stock, in which case we assume that the entire
investment capital is placed in the stock at the start of the simulation. The portfolio
distribution shows the value of each stock in the portfolio in a bar chart. The free
investment capital plot simply shows the amount of investment capital not tied up in
stocks at each point in time. Some sample plots are given in Figure 5.1,

1http://www.jfree.org/jfreechart/

55

http://www.jfree.org/jfreechart/


(c) Portfolio Value History

(d) Portfolio Value Distribution

(e) Free Investment Capital History

Figure 5.1: Plots generated by portfolio simulations.
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6 Results and Discussion

Figure 6.1: The Stock Price Prediction Model

This chapter presents the results obtained by testing the developed stock price prediction
model (Figure 6.1) described over the past three chapters on price data from the Oslo
Stock Exchange. Returning to the research question and success criteria initially stated in
Section 1.4, we want to evaluate if the developed prediction model is capable of selecting
stocks to trade with performance comparable to a professional technical trader. The
primary measure of performance is thus based on running portfolio simulations using
predicted trade signals generated for all stocks in the dataset described in Section 1.3.
Portfolio simulations provide a quantitative basis for analysis through profit-ratios and
other derived data, and a qualitative basis for discussion through generated transaction
histories.

As each reasoning layer (i.e., Feature Generation and Feature Aggregation) may serve as
independent prediction models each layer will be evaluated individually. Consequently,
in Section 6.1 we evaluate the Feature Generation module in isolation, in Section 6.2
we evaluate the results of using machine learning to aggregate features in the Feature
Aggregation module, and finally, in Section 6.3 we evaluate the utility of the money
management strategy and the performance of the entire model applied as an artificial
trader.

In order to remain consistent in evaluation and discussion the same experiment procedure
is executed on both reasoning layers. That is, when evaluating the Feature Generation and
Feature Aggregation module portfolio simulations will be run using the same parameter
settings. In order to evaluate the full utility of each module we allow the portfolio
simulation to execute every generated trade signal (i.e., there is no transaction limit) and
we use a fixed order total of 1000 NOK for every buy signal. That is, for every generated
buy signal 1000 NOK is invested in the associated stock and for every generated sell signal
we sell all shares currently in the simulated portfolio. We initialize portfolio simulations
with a high initial investment capital (500 000 NOK) to ensure that the simulation never
runs out of money. The amount of initial investment capital is not really relevant as long
as the simulation always have sufficient funds to execute the predicted trade signals.

The dataset described in Section 1.3 is divided in two training and test sets to evaluate
different problem scenarios. In the first scenario (denoted Dataset A) the model is
trained with data from 01-01-2005 to 31-12-2008 and tested with the remaining data from
01-01-2009 (see Figure 6.2). In this scenario we evaluate how well the model performs
in an essentially good year where the benchmark index is in an uptrend. In the second
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scenario (denoted Dataset B) the model is tested with data from 01-01-2008 (see Figure
6.3). In this scenario we evaluate how well the model performs during a period of high
recession due to the financial crisis. We thus asses if the model is capable to regain
potential losses as the recession turns in the start of 2009.

(a) Training Data (b) Test Data

Figure 6.2: Dataset A - A ”Good” Year

(a) Training Data (b) Test Data

Figure 6.3: Dataset B - A ”Difficult” Year

6.1 Feature Generation Results

The Feature Generation module contains a population of agents that implement domain
knowledge from technical stock analysis. That the agents correctly implement their
intended domain knowledge was empirically validated to some extent in Chapter 3 and
in more detail in (Larsen, 2009). The focus here is thus to evaluate the performance of
the technical indicators implemented by the agents in terms of profits generated over
portfolio simulations. Naturally, as agents that implement measures of trend, trend
strength and volume do not generate trade signals (i.e., buy, sell and hold), they are
difficult to evaluate in terms of profitability alone. A discussion of these agents is thus
delayed to Section 6.2 where their utility in combination with the other agents will be
discussed. The agents evaluated here are thus agents that implement measures of trend
reversal and thereby generate buy and sell signals.

Each agent instance is tested by running it through the portfolio simulation described in
Section 5.2. That is, for each day in the test data the portfolio simulation gathers trade
signals generated by the input model (in this case an agent instance) for all stocks in the
dataset. Simulated transactions are then executed based on the collected trade signals.
The portfolio parameters used were outlined in the introduction to this chapter (i.e., we
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use an initial investment capital of 500 000 NOK and a fixed order total of 1000 NOK).
We use the initial investment capital as a baseline measure of performance. Thus, if an
agent instances generates trade signals that yield profits above the initial investment
capital we consider the agent successful.

As some agents are parametrized, we execute the experiment twice for two sets of agent
instances with different parameters. First, the Candlestick Agent, SMA Crossover Agent
and Stochastic Agent are tested with their default parameter settings. Next, we evaluate
two different parameter settings for the SMA Crossover Agent and Stochastic Agent,
thereby evaluating the effect of using different parameters in terms of generated profits.

(a) Portfolio value history for the first set of agent instances over Dataset A.

Agent Buy Signals Sell Signals Portfolio-Value Profit

Candlestick 724 283 508518 8518
SMA Crossover (5:20) 577 575 522800 22800
Stochastic (14) 216 72 522485 22485

Average 506 310 517942 17942
(b) Transaction history overview.

Figure 6.4: Results for the fist set of agent instances over Dataset A.

Figure 6.4 show the results obtained by executing the experiment on the first set of agent
instances over Dataset A. The results show that every agent instance generate positive
returns with the SMA Crossover Agent producing the best end-result with a profit of
22800 NOK. The Stochastic Agent generates the best overall results considering the
portfolio value history. On average, the three agent instances generates a profit of 17942
NOK. If we compare the number of transaction executed by each agent against the profits
obtained it does indicate that a large number of spurious signals are generated. However,
as every agent instance does yield an end-result with positive returns, the profitable
signals do seem to outweigh the unprofitable signals. In this respect, the Stochastic Agent
is again the best-performing agent as it executes far fewer transactions than the other
two agent instances, thus indicating that it generates a higher ratio of profitable signals.
The poor performance of the Candlestick Agent may be because it is designed to detect
short-term trend reversals and in the experiment stocks are only sold if a corresponding
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sell signal is generated.

(a) Portfolio value history for the first set of agent instances over Dataset B.

Agent Buy Signals Sell Signals Portfolio-Value Profit

Candlestick 1313 513 471100 -28900
SMA Crossover (5:20) 954 952 512758 12758
Stochastic (14) 588 143 473579 -26421

Average 952 536 485821 -14179
(b) Transaction history overview.

Figure 6.5: Results for the fist set of agent instances over Dataset B.

Figure 6.5 show the results obtained by executing the experiment on the same set of
agent instances over Dataset B. Here, the performance of the agents is considerably worse
with the SMA Crossover Agent being the only agent yielding a profit. This is not a
surprising result considering that the financial crisis hit in mid-2008 which resulted in a
dramatic price fall for every one of the 53 stocks in the dataset. On average, stock prices
fell by approximately 60% from May 2008 to early January 2009, making it a period of
time when it was practically impossible to generate profits from trading. To obtain a
profitable result in this period a trader would have to a) sell all shares in the portfolio
before prices started to decline, or b) execute a large number of smart short-term trades
catching small upturns in price.

In this respect, the performance of the SMA Crossover Agent in this period is quite
significant. If we examine the transaction history generated by the agent we find that
the it predominantly generates sell signals in the period from May 2008 to October 2008,
resulting in a small portfolio (i.e., few stocks) during the worst period of price decline.
The domain knowledge implemented by the agent thus seem to work as expected; once
price starts to fall the shorter moving average falls below the longer moving average
and a sell signal is generated. The domain knowledge implemented by the Stochastic
Agent and Candlestick Agent seem to be less applicable in this downtrend period as they
continue generating a large number of buy signals throughout 2008. This is a result we
hope the Feature Aggregation will be capable to learn.
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(a) Portfolio value history for the second set of agent instances over Dataset A.

Agent Buy Signals Sell Signals Portfolio-Value Profit

SMA Crossover (20:50) 208 187 528899 28899
SMA Crossover (50:200) 56 16 521574 21574
Stochastic (7) 121 48 521969 21969
Stochastic (28) 237 61 516285 16285

Average 156 78 521970 21970
(b) Transaction history overview.

Figure 6.6: Results for the second set of agent instances over Dataset A.

(a) Portfolio value history for the second set of agent instances over Dataset B.

Figure 6.7: Continued on next page. . .
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Agent Buy Signals Sell Signals Portfolio-Value Profit

SMA Crossover (20:50) 331 308 523927 23927
SMA Crossover (50:200) 73 33 518540 18540
Stochastic (7) 335 109 510198 10198
Stochastic (28) 755 127 456272 -43728

Average 374 144 502023 2023
(b) Transaction history overview.

Figure 6.7: Results for the second set of agent instances over Dataset B.

Figure 6.6 and 6.7 show the results obtained by executing the same experiment over the
second set of agent instances over Dataset A and B, respectively. Over Dataset A, the
results are fairly consistent with the above results with the second set of agent instances
generating approximately the same profits as the first set of agent instances. Over Dataset
B, however, we find that the second set of agent instances does generate better results
than the first set of agent instances. This indicates that it may be useful to include
some internal machine learning in the Feature Generation layer that learns appropriate
parameters for each parametrized agent. This concept will be further explored in Chapter
7 where we discuss possible points for future work.

6.2 Feature Aggregation Results

The purpose of the Feature Aggregation module is to combine and contextualize the
features generated in the Feature Generation module. This is done by organizing agent
instances in decision trees and searching for profitable decision trees using a developed
evolutionary algorithm called the Agent Decision Tree Learning (ADTL) algorithm.
In this section we evaluate the performance of using evolved agent decision trees as
investment strategies compared to using the agents directly as discussed in the previous
section.

The Feature Aggregation module is evaluated using the same experiment procedure
outlined in the previous section. That is, the ADTL algorithm is executed on every stock
in the dataset, creating 53 separate agent decision trees, one for each stock. The agent
instances used include every instance evaluated in the previous section as well as the
Trend Agent, ADX Agent and Volume Agent. For each day in the test data the portfolio
simulation evaluates each decision tree, thus generating a trade signal for every stock in
the dataset. The baseline measure of performance in this experiment is the portfolio value
history generated by the agents. That is, if the Feature Aggregation module generates
higher profits than the agents on which it is based, we consider the experiment a success.
The parameters used in the ADTL algorithm was given in Section 4.3.7.

The results obtained by executing the experiment procedure over Dataset A are given
in Figure 6.8. As the Feature Aggregation module is an inherently stochastic process,
20 runs of the experiment procedure are executed. The results show that the Feature
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(a) Portfolio value history for the best, worst and average run.

(b) Histogram of profits generated by the 20 runs.

(c) Bar chart of profits generated by the 20 runs.

Figure 6.8: Feature Aggregation results over Dataset A. On average, portfolio simulations
over the Feature Aggregation module execute 2767 transactions with 2203 buy transactions
and 564 sell transactions.
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Aggregation module generally outperform all agent instances tested in the previous
section. The best run reached a profit of 146898, thus beating the best performing agents
by approximately 400%. The poorest run, however, generated a profit of 2126, which
is in line with the poorest performing agents. Averaged over the 20 runs, the Feature
Aggregation model generates profits of 75 000, approximately 275% better than the agent
population average. 7 of the 20 runs generated profits above 100 000.

Looking at the transaction history generated by each run we find that, on average,
portfolio simulations over the Feature Aggregation module execute 2767 transactions
where 2203 are buy transactions and 564 are sell transactions. As there is a total of
343 days in the test data, on average 6 buy transactions and 2 sell transactions are
executed each day. Considering the high number of transactions executed, analyzing the
transaction history generated by each run becomes a difficult task. Moreover, due to the
inherent stochasticity in the module (each run is, in principle, based on a different set of
53 agent decision trees), it is difficult to determine the factor that distinguishes good
runs from poor runs. We may thus question if the good performance of the module is the
result of a higher number of transactions or a selected set of more profitable transactions.

In order to analyze this to some extent we continue by analyzing a single run of the
ADTL algorithm for one of the 53 stocks. We thus leave a deeper analysis of the complete
transaction histories generated by the module to Section 6.3 where we use a transaction
limit making it more feasible to qualitatively analyze the transaction history.

Figure 6.9: Evolved agent decision tree for Norwegian Air Shuttle (NAS) including success
rates associated to each classification (see Section 6.3). The success rates are calculated
using a target increase/decrease of 5% over a maximum of 10 days.

Figure 6.9 shows an agent decision tree for Norwegian Air Shuttle (NAS) evolved over
the training data shown in Figure 6.11a. From Figure 6.10 we see that the average fitness
of the population and the fittest individual gradually evolves over successive generations,
eventually reaching a maximum fitness of 15.86. The ADTL algorithm thus works as
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expected by generating successively higher fitness decision trees. Figure 6.11 show the
portfolio value history generated by the fittest individual produced at the end of the
evolutionary cycle over the training data.s The most encouraging observation from Figure
6.11a and 6.11b is that the investment strategy represented by the fittest decision tree
successfully catches the uptrend at the start of the period and sells when the downtrend
starts to form at the end of the period. The decision tree has thus successfully generated
very profitable entry and exit points in the stock.

Figure 6.10: Fitness Progression for ADTL on Norwegian Air Shuttle (NAS)

(a) NAS Portfolio Run Training (b) NAS Portfolio Run Test

Figure 6.11: Portfolio value plot for the decision tree evolved for NAS (Norwegian Air
Shuttle). Buy and sell signals are denoted by ’+’/’-’, respectively.

Doing a full analysis of the entire tree given in Figure 6.9 would be a challenging task
considering its size and complexity. However, we can see that the tree does captures some
important details about the training data. For one, the evolved tree has the Trend Agent
placed at the root of the tree. As the training data begins in a strong uptrend and ends
in a strong downtrend it seems reasonable to test the Trend Agent first. Furthermore,
following the downtrend branch from the Trend Agent we reach the ADX Agent that
measures trend strength. If the ADX Agent detects that the data is in a strong trend a
sell signal is produced. Thus, the tree successfully captures the trading rule, ”sell given
a strong downtrend”. The utility of this rule can be observed during the latter part of
Figure 6.11a and 6.11b where sell signals are generated when the downtrend starts to
form. If we follow the uptrend branch from the Trend Agent we find the Moving Average
Crossover (MAC) Agent. Here, a buy signal is produced if the agent does not detect
a crossover. This also seems reasonable given that we know the price is in an uptrend.
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(a) Portfolio value history for the best, worst and average run.

(b) Histogram of profits generated by the 20 runs.

(c) Bar chart of profits generated by the 20 runs.

Figure 6.12: Feature Aggregation results over Dataset B. On average, 2927 transactions
are executed with 2235 buy transactions and 692 sell transactions.
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If the price is in an uptrend and we detect no moving average crossover (i.e., no trend
reversal signal) it seems reasonable to buy.

Given the above discussion it does seem like the ADTL algorithm is capable of learning
some important aspects of the training data. Unfortunately, the results for Dataset B,
given in Figure 6.12, are less encouraging. Although the best run generated a profit of 86
000, the average result is a loss of approximately 40 000. Moreover, 15 of the 20 runs
result in no profits or negative returns. By examining the transaction histories generated
we find that the module keeps making a large number of trades in the downtrend period
of 2008. On average, 4 buy transactions and 1 sell transaction is executed each day in
the test data. Thus, the Feature Aggregation module does not outperform the agent
population in this experiment. This is not really a surprising result if we consider the
training data used in this dataset. The training data used include data from January
2005 to January 2008 which is, in general, in a strong uptrend. The module has thus
been trained in a period where it is very beneficial to purchase. In the following section
we will go through a deeper analysis of the transaction histories generated in this period
using the money management strategy.

6.3 Money Management Results

The money management strategy was implemented to determine the amount of money
to invest on a given trade signal and to assess the strength of generated trade signals. In
this section we evaluate the utility of the money management strategy applied to trade
signals generated by the Feature Aggregation module (we will later refer to the Feature
Aggregation module with and without the money management strategy as FA+MM and
FA-MM, respectively). This section thus documents the final results with the complete
prediction model employed as an artificial trader.

The experiment is executed with the money management strategy employed to determine
the amount of stocks to buy and sell during training and testing. We thus use a different
fitness function for the ADTL algorithm; rather than investing the entire investment
capital on each buy signal and selling all shares on each sell signal, the fitness function
will employ the same portfolio simulation as used by the experiment procedure. During
training, the money management module incrementally adapt the probability measures
used by the strategy. During testing, the money management values remain fixed. The
money management values are thus trained indirectly by the ADTL algorithm.

The portfolio simulations are executed using the same parameter settings as used when
evaluating FA-MA except that we use the money management strategy to determine
the amount of shares to purchase and sell rather than investing a fixed amount. As
the results from the two previous sections show that a large number of trade signals
are typically generated, we impose a transaction limit of 1 buy and 1 sell transaction
each day. The money management value associated to each trade signal is then used
to select between competing signals (i.e., a trade signals with high money management
values will be prioritized). The money management strategy thus acts as a signal filter
for each day in the training and test data. The baseline measure of performance in this
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(a) Portfolio value history for the best, worst and average run.

(b) Histogram of profits generated by the 20 runs.

(c) Bar chart of profits generated by the 20 runs.

Figure 6.13: FA+MA results over Dataset A.
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experiment are the results from the previous section (i.e., FA-MM). We will also compare
the results against placing the entire investment capital in the Oslo Benchmark Index
(OSEBX). That is, if FA+MM generate better results than FA-MM and higher profits
than investing the entire capital in the benchmark index we consider the model a success.
Placing 500 000 NOK in OSEBX would result in a profit of 261 565 over Dataset A (an
increase of 52%) and a loss of 129 243 over Dataset B (a decrease of 25%).

Figure 6.13 show the results generated by the experiment on FA+MM over Dataset A.
Although Figure 6.13c indicate that there are larger variations in the performance of each
run, the average profit over the 20 runs is 630 775, over doubling the amount of initial
investment capital. Compared to the results in the previous section, the average profits
for FA+MM are 740% better than the average profits for FA-MM and 141% better than
placing the entire capital in OSEBX. We also find that 15 of the 20 runs manage to
double the initial investment capital. The best run almost tripled the initial capital with
a profit of 1 439 501.

(a) Portfolio value distribution (b) Free investment capital history

Figure 6.14: Data from run 17.

(a) Marine Harvest (MHG) (b) Seadrill (SDRL)

(c) Pronova BioPharma (PRON) (d) Blom (BLO)

Figure 6.15: Price history for two profitable stocks (MHG and SDRL) and two less
profitable stocks (PRON and BLO).

If we continue by analyzing the portfolio value distribution at the end of the best run,
given in Figure 6.14a, we see that the distribution is dominated by two stocks, Marine
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Harvest (MHG) and Seadrill (SDRL). Furthermore, by looking at the transaction history
we find that the first transactions executed in the run are large buy orders for MHG. This
behavior is further reflected in a plot of the free investment capital history generated by
the run, given in 6.14b, where the amount of investment capital not tied up in stocks
decreases rapidly from the start of the simulation to July 2009 where a large sell order
for MHG is executed. The model then subsequently starts to invest in Seadrill and
re-purchase some shares in MHG. If we examine the price history for MHG and SDRL in
Figure 6.15 we find that they are both in a strong uptrend during the period, making
them very profitable to hold. With an increase of 308% in 2009, MHG is the fifth
best-performing stock on OSE in 2009. This result is consistent with other good runs
as well, they are all dominated by a selection of a few well-performing (i.e., profitable)
stocks, such as TGS, COP, ATEA, SCH and MHG. The poor runs, on the other hand, are
dominated by a selection of a few poor performance stocks such as Pronova BioPharma
(PRON) and Blom (BLO). It thus seems like the performance of the module is dominated
by its ability to select a few well-performing stocks early in the portfolio simulation.

Figure 6.16 show the results obtained over Dataset B. Not surprisingly, the profits
generated over this dataset are not as substantial as in Dataset A. However, on average
the model successfully outperforms both the results from the previous section without
the money management strategy and OSEBX. On average, the model generates a profit
of 63340 NOK, a fairly good result considering the average return for FA-MM was a
loss of 37650 and placing the entire capital in OSEBX would result in a loss of 129 243.
Moreover, 12 runs generate a profit while 8 runs result in negative returns. The best
runs from this experiment are fairly consistent with the best runs over Dataset A. That
is, the model invests a large sum of money in a few profitable stocks. For example, in
run 16 the module primarily invests in Royal Caribbean Cruises (RCL), Telenor (TEL)
and Marine Harvest (MHG), all of which increase rapidly in price from the start of 2009.
The model does not, however, refrain from trading during the period of high recession.
As we have noted before, this may be a result of the training data in this dataset being
in a strong uptrend. The model has consequently not been trained on a similar case
before, which makes it particularly difficult to generate predictions for this period. In
this respect, we may view the above results as successful.
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(a) Portfolio value history for the best, worst and average run.

(b) Histogram of profits generated by the 20 runs.

(c) Bar chart of profits generated by the 20 runs.

Figure 6.16: FA+MA results over Dataset B.
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7 Conclusion

The results documented in the previous chapter show that the developed prediction
model using domain knowledge, machine learning and a money management strategy can
create substantial profits when evaluated on the Oslo Stock Exchange. Some portfolio
simulations increase the initial investment capital by almost 300% from January 2009 to
May 2010, thus beating the Oslo Benchmark Index by approximately 250%. Although
the model is less profitable when evaluated from January 2008, we do find that it does
perform surprisingly well considering the global financial crisis that occured in mid-2008.
In many simulations the model has regained the loss incurred by the financial crisis by
mid-2009 and starts generating profits by late-2009, a significant result considering that
the benchmark index fell by approximately 300 points from mid-2008 to 2009. We may
thus conclude that the research question and success criteria stated in Section 1.4 have
been successfully fulfilled, essentially to a greater extent than what was expected when
the research question was first conceived and the success criteria defined.

The two-layer reasoning architecture is also deemed successful. For one, the agent-oriented
design of the first reasoning layer allows for easy integration with new analysis techniques
and adaptability by simply adding and/or removing agents from the agent population,
facilitated by strictly defined agent and layer interfaces. As each layer may serve as
independent prediction models, we get the added ability to evaluate each layer without
interference from other parts of the system. The second layer of reasoning is also highly
adaptable as the fitness function employed by the ADTL algorithm can be easy extended
with additional constraints or other measures of success.

The omission of transaction costs in the portfolio simulation procedure is perhaps the
most apparent flaw in the results documented in the previous chapter. Transaction
costs can be difficult to model as they depend on the broker used, the order total of the
executed transaction, tax deductions, and various other aspects. We have thus focused
more on giving the prediction model elements of adaptability so that extensions, such as
a transaction cost model, can be easily integrated in the existing system. Moreover, as
the Feature Aggregation module learns its investment strategies from experience through
a specific performance measure, it seems reasonable to think that it will also learn how
to cope with transaction costs. In the final results, we employed as transaction limit
which would reduce the effects on transaction costs on the results. A more thorough
statistical analysis of the predictions generated by the different model modules would
have been beneficial in validating the results. However, due to time constraints this was
not completed in time and will consequently be added as a point for future work.

The most apparent problem with the prediction model is the inherent stochasticity in
the model. While some portfolio simulations triple the initial investment capital, other
simulation runs produce very little or no profits. Although few portfolio simulations have
resulted in a loss of capital, it may seem like a challenging task to trust the model with
real (rather than simulated) money. Moreover, this difference in profitability between
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runs can be difficult to explain as each run is based on a different set of agent decision
trees. As a result, we conclude this conclusion by outlining some possible points for
future work that may be used to mitigate this challenge and increase confidence in the
model.

One approach to mitigate the apparent risk and create more stable result may be to
extend the Feature Generation module with additional domain knowledge. As the current
system uses historical prices as its sole basis for prediction, it seems natural to extend the
system with agents that performs fundamental analysis. In Norway, every company listed
on the Oslo Stock Exchange are required by law to issue quarterly financial statements.
Financial statements that report higher earnings, increased productivity, etc., are typically
accompanied by an increase in the company’s stock price. An agent that monitors the
stock exchange for financial statements and classifies them as good or bad may thus be
very useful. Stock prices are also influenced by expectations caused by news reports. A
web-mining agent that tries to analyze if a stock has received positive or negative news
coverage may thus provide the model with an important second source of information.
Moreover, the global economy and stock markets influences each other in many ways,
which might motivate an agent that monitors stock markets in other parts of the world.
In order to increase confidence in the generated predictions, an explanation module that
provides explanations for the predictions generated would have been a highly regarded
addition to the model. Explanation reasoning is a commonly researched topic in the
Case-Based Reasoning community (Leake, 1995).

For the risk-averse trader the model may seem too unstable in its present state. However,
we still deem the results satisfactory, more so than what was expected when the work
was initiated, both in terms of the model architecture and the documented results.
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A Stocks

Ticker Name

ACTA Acta Holding
ACY Acergy
AIK Aktiv Kapital
AKER Aker
AKSO Aker Solutions
ALGETA Algeta
ASC ABG Sundal Collier Holding
ATEA Atea
AUSS Austevoll Seafood
BLO Blom
BWG BWG Homes
CEQ Cermaq
COP Copeinca
DNBNOR DnB NOR
DNO DNO International
EDBASA EDB Business Partner
EKO Ekornes
FOE Fred. Olsen Energy
FRO Frontline
GOGL Golden Ocean Group
HNB Hafslund
KOA Kongsberg Automotive Holding
LSG Lerøy Seafood Group
MAMUT Mamut
MHG Marine Harvest
NAS Norwegian Air Shuttle
NHY Norsk Hydro
NPRO Norwegian Property
NSG Norske Skogindustrier
OPERA Opera Software
ORK Orkla
PGS Petroleum Geo-Services
PRON Pronova BioPharma
PRS Prosafe
RCL Royal Caribbean Cruises
REC Renewable Energy Corporation
SALM SalMar
SAS NOK SAS AB
SCH Schibsted
SDRL Seadrill
SEVAN Sevan Marine
SNI Stolt-Nielsen
SONG Songa Offshore
STB Storebrand
STL Statoil
SUB Subsea 7
TEL Telenor
TGS TGS-NOPEC Geophysical Company
TOM Tomra Systems
VEI Veidekke
VIZ Vizrt
WWI Wilh. Wilhelmsen
YAR Yara International
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import u r l l i b

o s e b x t i c k e r s = [ ”ACTA” , ”ACY” , ”AIK” , ”AKER” , ”AKSO” , ”ALGETA” , ”ASC” , ”ATEA” , ”
AUSS” , ”BLO” , ”BWG” , ”CEQ” , ”COP” , ”DNBNOR” , ”DNO” , ”EDBASA” , ”EKO” , ”FOE” , ”FRO
” , ”GOGL” , ”HNB” , ”KOA” , ”LSG” , ”MAMUT” , ”MHG” , ”NAS” , ”NHY” , ”NPRO” , ”NSG” , ”
OPERA” , ”ORK” , ”PGS” , ”PRON” , ”PRS” , ”RCL” , ”REC” , ”SALM” , ”SAS−NOK” , ”SCH” , ”
SDRL” , ”SEVAN” , ”SNI” , ”SONG” , ”STB” , ”STL” , ”SUB” , ”TEL” , ”TGS” , ”TOM” , ”VEI” ,

”VIZ” , ”WWI” , ”YAR” ]

u r l s t a r t = ” http :// hopey . net fonds . no/ pape rh i s to ry . php? paper=”
ur l end = ” .OSE&csv format=csv ”

print ”Downloading p r i c e h i s t o r y from OSE . . ”

for t i c k e r in o s e b x t i c k e r s :
print ”Downloading ” + t i c k e r + ” . . . ”
i n f i l e = u r l l i b . ur lopen ( u r l s t a r t + t i c k e r + ur l end )
o u t f i l e = open ( t i c k e r + ” . csv . ” , ”w” )
o u t f i l e . wr i t e ( i n f i l e . read ( ) )
i n f i l e . c l o s e ( )
o u t f i l e . c l o s e ( )

Listing A.1: Python script for downloading price data.
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B Candlestick Patterns

(a) Hammer (b) Hanging Man

(c) Bullish Engulfing (d) Bearish Engulfing

(e) Three White Soldiers (f) Three Black Crows

(g) Three Inside Up (h) Three Inside Down

(i) Evening Star (j) Morning Star

(k) Three Outside Up (l) Three Inside Down
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